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Abstract

This thesis reports on different aspects of code optimization for quantum comput-
ing in three parts. The first pertains to automatic optimization of quantum circuits
by compilers, the second to optimizing code for classical simulation of quantum
algorithms, and the third to developing optimized circuit designs for evaluating
classical functions on quantum computers.

More specifically, we develop a software methodology for compiling quantum
programs in the first part of this thesis. The methodology aims to provide the
necessary layers of abstraction in order to make the implementation of high-level
quantum algorithms less time-consuming and the resulting code more efficient.
We introduce a new optimization methodology which inspects the Hoare triples
of all invoked subroutines to exploit optimization opportunities that could not be
identified as such by previous methods. As an additional approach to optimiza-
tion, we address the problem of managing approximation errors that occur during
compilation and illustrate the benefits and drawbacks of our proposed solution.

In the second part, we reduce the resources required for classical simulation of
quantum computers via two different approaches. The first is a fully-optimized
state vector simulator which was used to simulate 45 qubits on the Cori II super-
computer. Subsequently, we introduce the concept of a quantum circuit emulator
and demonstrate that this new approach is able to outperform simulators by several
orders of magnitude, especially for quantum circuits that evaluate mathematical
functions.

The third and final part is devoted to manual optimization of quantum cir-
cuits. In particular, we focus on circuits for integer and fixed-point arithmetic.
We develop a new addition circuit which allows for space-savings by borrowing
idle qubits from other parts of the computation. These idle qubits may be in an
arbitrary state and entangled with other qubits in the system. In addition, we
then use our construction to implement Shor’s algorithm and achieve an asymp-
totic scaling advantage over previous space-efficient implementations. Finally, we
develop a fixed-point library for evaluating mathematical functions that are often
encountered in the quantum algorithm literature. To evaluate these functions, our
scheme efficiently combines a host of low-degree polynomials, each approximating
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the function on a small subdomain. This allows to obtain very accurate approxi-
mations at a cost that is similar to evaluating just a single low-degree polynomial.
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Zusammenfassung

Diese Arbeit behandelt unterschiedliche Aspekte der Codeoptimierung für Quan-
tencomputing in drei Teilen. Der erste Teil ist der automatischen Optimierung
von Quantenschaltkreisen durch Compiler gewidmet. Der zweite Teil befasst sich
mit der Optimierung klassischer Simulationen von Quantenalgorithmen und im
dritten Teil werden optimierte Quantenschaltkreise für die Auswertung klassischer
Funktionen auf Quantenrechnern entwickelt.

In einem ersten Schritt wird eine Softwaremethode zur Kompilierung von Quan-
tenprogrammen erarbeitet und die nötigen Abstraktionsebenen mit dem Ziel einge-
führt, das Implementieren abstrakter Quantenalgorithmen weniger zeitaufwändig
und den resultierenden Code effizienter zu machen. Anschliessend wird eine neuar-
tige Optimierungsmethode für Quantenschaltkreise eingeführt, welche die Hoare-
Tripel aller aufgerufenen Subroutinen in Betracht zieht, um Optimierungsmög-
lichkeiten zu nutzen, die mit bisherigen Methoden nicht als solche erkannt werden
konnten. Als eine weitere Möglichkeit der Schaltkreisoptimierung wird das Bestim-
men der Fehlertoleranzen während des Kompilierens behandelt und die Vor- und
Nachteile der vorgeschlagenen Lösungsmethode werden diskutiert.

Im zweiten Teil der Arbeit werden die für die Simulation von Quantenrech-
nern auf klassischer Hardware erforderlichen Rechenressourcen mithilfe zweier un-
terschiedlicher Herangehensweisen verringert. Bei der ersten handelt es sich um
einen optimierten Zustandsvektorsimulator, der bei der Simulation von 45 Qubits
auf dem Cori II Supercomputer zum Einsatz gekommen ist. Anschliessend wird
das neue Konzept der Emulation von Quantenschaltkreisen eingeführt und ge-
zeigt, dass dieser Ansatz es erlaubt, die Laufzeit gegenüber der Simulation um
viele Grössenordnungen zu verkürzen. Dies gilt insbesondere für die Emulation
von Quantenschaltkreisen, die mathematische Funktionen auswerten.

Der dritte und letzte Teil widmet sich der manuellen Optimierung von Quanten-
schaltkreisen. Dabei werden insbesondere Schaltkreise für Ganzzahl- und Fixpunk-
tarithmetik berücksichtigt. Entwickelt wird ein neuer Additionsschaltkreis, der
Speicherersparnisse ermöglicht, indem inaktive Qubits von anderen Teilen der Be-
rechnung zeitweise übernommen werden. Diese Qubits können in einem beliebigen
Zustand und insbesondere auch mit anderen Qubits des Systems verschränkt sein.
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Zusätzlich wird diese Schaltkreiskonstruktion dazu verwendet, Shors Algorithmus
zu implementieren und auf diese Weise einen asymptotischen Skalierungsvorteil
gegenüber bisherigen speichereffizienten Implementationen zu erzielen. Schliesslich
wird eine Bibliothek für Fixpunktarithmetik entwickelt. Diese erlaubt die Aus-
wertung jener mathematischen Funktionen, denen man häufig in der Literatur zu
Quantenalgorithmen begegnet. Dazu werden mehrere Polynome niedrigen Grades
so kombiniert, dass diese Funktionen mit hoher Genauigkeit ausgewertet werden
können, ohne dass dabei die Laufzeit oder die Speicheranforderungen des resultie-
renden Schaltkreises signifikant grösser würden als dies bei der Auswertung eines
einzigen Polynoms niedrigen Grades der Fall ist.
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Chapter 1

Introduction

This chapter discusses the basics of quantum computing and concludes with an
outline of the thesis.

1.1 Quantum computing
Quantum computing makes use of the laws of quantum mechanics to solve certain
computational tasks asymptotically faster than classical computers. Examples for
tasks at which quantum computers excel are factoring [13], function inversion [14],
accelerating Markov chain based algorithms [15], and the simulation of quantum
systems [16].

More precisely, factoring denotes the problem of finding natural numbers p
and q for a given input number N such that p · q = N . For an n-bit input
number, Shor’s algorithm solves this problem using O(n3) quantum operations.
This is a superpolynomial improvement over the best known classical algorithm,
the number field-sieve [17]. Many of today’s encryption schemes are based on
factoring or similar problems because they are believed to be difficult to solve
classically. As a result, the advent of quantum computers will require a switch to
encryption schemes that are resilient to quantum attacks. Possible candidates are,
for instance, lattice-based cryptography schemes such as learning with errors [18].

The problem of function inversion is as follows: Given an oracle which ef-
ficiently identifies a correct answer among M possibilities, this answer can be
found using O(

√
M) queries to the oracle using a quantum algorithm called Grover

search. Classically, unstructured search requires Θ(M) queries to the oracle which
makes this a quadratic advantage.

The third example—the acceleration of Markov chain based algorithms—can
be seen as a generalization of Grover search. For certain problems, however, even
exponential speedups are possible [19].
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1.1 Quantum computing

The final example is the simulation of quantum systems which, due to the
fact that quantum computers themselves behave quantum mechanically, can be
achieved using exponentially fewer resources than are required classically [16]. This
may have a large impact on the development of medicine and new materials which
is the reason that it is currently considered to be the most promising application
of future quantum computers.

Given this list of applications, the question of how or why quantum comput-
ers solve these problems more efficiently immediately arises. A first step toward
answering this question is to understand the concept of quantum superposition.

Classical computers compute by manipulating bits, which is the most basic
unit of memory and which can be represented as a switch that is either off (zero)
or on (one). In contrast, quantum computers operate on quantum bits or qubits.
Similar to a classical bit, a qubit can also be in one of two states, which we denote
by |0〉 (ket zero) and |1〉 (ket one). The state of the qubit |q〉 can then be described
as

|q〉 = α0 |0〉+ α1 |1〉 ,

where α0 and α1 are complex numbers such that |α0|2 + |α1|2 = 1. Thus, if either
of these two coefficients is 0 and the other is 1, then |q〉 = |0〉 or |q〉 = |1〉, just like
a classical bit. Consider a qubit |q〉 in one of the states

|+〉 := 1√
2

(|0〉+ |1〉) or |−〉 := 1√
2

(|0〉 − |1〉) .

The qubit is somehow in both states 0 and 1 simultaneously. If we were to look
at the qubit, i.e., measure its value, we would find it in state |0〉 with probability
|α0|2 = 0.5, and in |1〉 with probability |α1|2 = 0.5. One may of course argue that
this is a classical bit, but one that is flipped with a certain probability, making the
outcome of a measurement probabilistic.

For an example describing a multi-qubit system, consider a system of two qubits
and denote its state by |q1q0〉. The system may be in a superposition of all possible
classical states of these two qubits,

|q1q0〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉
= α0 |0〉+ α1 |1〉+ α2 |2〉+ α3 |3〉 ,

where we have interpreted the two bits as binary numbers in the second line, e.g.,
102 = 2. The normalization condition is again ∑i |αi|2 = 1.

To illustrate what quantum entanglement is, let α0 = α3 = 1√
2 and α1 = α2 = 0.

When measuring the first qubit, the probability of finding it in |0〉 is p = 1/2,
as before. This time, however, a measurement of one of the qubits also reveals
information about the other qubit since in this superposition, the qubits are either
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Introduction

both zero, or both one. Once the state of one of the qubits has been measured, the
measurement outcome of the other qubit is already fixed. However, before doing
so, either qubit has a 50% chance of ending up in |0〉 or |1〉. The phenomenon of
quantum entanglement plays a crucial role in quantum information theory.

The final difference between a quantum mechanical description and a classical
probabilistic description is that classical probabilities are real numbers between
0 and 1, whereas the quantum probability amplitudes αi are complex numbers
which, in particular, may be negative. This, in turn, leads to a third phenomenon
called quantum interference. When combined, superposition, entanglement and
interference allow for quantum algorithms where the probability amplitudes of
wrong answers cancel each other while boosting the probability amplitude of the
sought answer. At an abstract level, this is what happens in quantum algorithms
such as Grover search [14].

1.2 Qubits and gates
This section introduces general n-qubit systems more formally, together with op-
erations, so-called quantum gates, that may be applied to these systems in order
to carry out computations.

The state of a quantum system consisting of n qubits may be described by as-
signing a complex probability amplitude to every possible assignment of n classical
bits. The set of all such assignments is also called the computational basis. The
state |ψ〉 of an n-qubit quantum computer is then

|ψ〉 =
2n−1∑
i=0

αin−1in−2···i0 |in−1in−2 · · · i0〉 =
2n−1∑
i=0

αi |i〉 ,

where the n-bit string in−1in−2 · · · i0 can be interpreted as the binary representation
of the corresponding integer i in order to arrive at a more compact notation. The
normalization condition is ∑i |αi|2 = 1.

Because the computational basis is orthonormal, we can identify each basis
state |i〉 with the unit vector ei ∈ C2n which has entries

(ei)j = δij ,

where δij is the Kronecker delta which is 1 if i = j and 0 otherwise. As a result, |ψ〉
can be identified with a column vector ~α with entries αi and its conjugate transpose
|ψ〉† with ~α†. The normalization condition can then be written as ~α†α = 1 or, using
Dirac notation with 〈ψ| := |ψ〉†, equivalently as 〈ψ|ψ〉 = 1.

Let U ∈ C2n×2n be an operation (or quantum gate) acting on n qubits. The
normalization condition on the new state |ψ′〉 := U |ψ〉 is

〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 1 ,

3



1.3 Programming quantum computers

which must hold for all input states |ψ〉. Equivalently, U should be norm preserving
and, by the polarization identity, this is the case if and only if U preserves inner-
products [20, p. 33]. In other words, U should be unitary, meaning that

U †U = UU † = 12n×2n .

In particular, operations being unitary implies that they must be reversible: Any
unitary operation U can be undone by applying U †, since U−1U = U †U = 1.

Such unitary operations may also be applied controlled on another qubit, mean-
ing that they are applied if the control qubit is 1. Formally, the controlled version
of U is

U c := |0〉 〈0| ⊗ 1+ |1〉 〈1| ⊗ U ,

where |c〉 〈c| is the projector onto the subspace in which the control qubit has the
value c ∈ {0, 1} and ⊗ denotes the tensor product. Since the control qubit may
be in a superposition, the state after applying U c is in a superposition of having
and not having applied U .

To see that by applying unitary operators one can, in particular, carry out any
classical computation, note that any such computation can be made reversible [21]
if the input is kept along with the result. Intermediate results can be uncom-
puted [21] by copying out the final result before running the entire computation
in reverse. As an example, consider evaluating r(x) which produces g(x) as an
intermediate result, where the input |x〉 may be in a superposition:

|x〉 |0〉 |0〉 |0〉 7→ |x〉 |g(x)〉 |r(x)〉 |0〉
7→ |x〉 |g(x)〉 |r(x)〉 |r(x)〉
7→ |x〉 |0〉 |0〉 |r(x)〉

Therefore, uncomputation allows to achieve the reversible mapping

|x〉 |0〉 7→ |x〉 |r(x)〉

efficiently for any classical function r(x), albeit with an overhead in both space
and time. Due to this overhead, the implementation details of classical functions
may have significant ramifications on the run time of quantum programs. We thus
consider automatic optimization of such circuits in the first part of this thesis and
provide hand-optimized implementations in the third part.

1.3 Programming quantum computers
In this thesis, we adopt an abstract, hardware-agnostic view of a quantum com-
puter. This is important especially because there are several competing qubit
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$ ./shor 34571
- Generating circuit
- Executing
- Result: 181, 191 
$ ./sim_hubbard
- Generating circuit

Low-level classical control
hardware at a few Kelvin

Quantum hardware at a
few millikelvin

CPUCCPPUU

Q

Figure 1.1: Abstract view of a quantum computer which consists of the actual
quantum processing unit (QPU) and a classical computer which controls the quan-
tum hardware by sending instructions to be executed by the QPU. Certain archi-
tectures require very low temperatures to operate, but this does not hold in general.
(reprint from Ref. [1])

technologies that are being investigated in various hardware laboratories, includ-
ing trapped ion [22] and superconducting qubit systems [23].

Specifically, the machine model we consider is a combination of a classical
computer and a quantum processing unit (QPU). The classical computer produces
a sequence of quantum instructions which are then executed on the QPU. In this
setting, the QPU is very similar to today’s classical accelerators such as graphics
processing units (GPU), field-programmable gate arrays (FPGA), or application-
specific integrated circuits (ASIC) [1, 24]. The fact that quantum computing allows
to speed up only certain tasks strengthens this analogy further.

While for certain technologies, additional classical hardware at lower levels may
be employed in order to deal with issues involving, e.g., latency or heat dissipation
from control lines, this abstract view remains valid: A classical processor passes
commands to the QPU which, ultimately, responds with measurement results to
be interpreted by a classical processor. For a depiction of this model, see Fig. 1.1.

In each clock cycle, the state of the QPU evolves according to the quantum
instructions dictated by the classical host. The overall action during each clock
cycle can be described by a 2n × 2n-dimensional unitary matrix acting on the
entire 2n-dimensional state vector of the system. However, many-body interactions
are typically not supported natively by the hardware due to the difficulties in
engineering and calibrating such interactions. We thus require that it is known
how to decompose these matrices in terms of the target gate set, which typically
consist of single-qubit gates and at least one two-qubit gate.

It is known that any unitary operation on n qubits can be written in terms of
single- and two-qubit gates [25, 26]. However, it is necessary that a decomposition
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1.4 Classical simulation of quantum circuits

of U in terms of the target gate set is known because for large n, it would be
infeasible to store U , let alone to find an efficient decomposition. For small n,
however, such matrices can still be stored and many procedures to decompose
small matrices in terms of various gate sets are known [26, 27, 28].

The resulting sequence of one- and two-qubit gates can be depicted as a quan-
tum circuit. In such a circuit, each qubit is represented by a horizontal line and
operations are drawn as boxes or other symbols on these lines, with time advancing
from left to right. For an example of a quantum circuit and for further details, see
chapter 2. For a list of often-encountered single- and two-qubit gates, including
their matrix- and circuit-representations, see Table 1.1.

The next section is concerned with the simulation of quantum computers on
classical hardware. In particular, it is shown how to convert a given k-qubit gate
(with k < n) to the full 2n× 2n-sized unitary matrix which can then be applied to
the 2n-dimensional state vector.

1.4 Classical simulation of quantum circuits
Current quantum computers feature tens of qubits with fairly high error rates,
making it impossible to successfully execute any quantum program beyond the
most basic examples. Despite this, it is possible to implement and test quantum
algorithms featuring up to 45 qubits using classical (super)computers [4]. While
there are several approaches to the simulation of quantum circuits [29, 30, 31],
we discuss the approach which is best-suited for the (full) simulation of circuits
featuring large depths.

To this end, the quantum state of an n-qubit system can be described by 2n
complex numbers α0, ..., α2n−1, where each of these αi is the probability amplitude
corresponding to the computational basis state

|i〉 := |in−1, ..., i0〉 := |in−1〉 ⊗ |in−2〉 ⊗ · · · ⊗ |i0〉 ,

and ik denotes the k-th bit of the integer k starting from the least significant
bit (LSB). An n-qubit quantum circuit is a sequence of M quantum operations
(g1, ..., gM), where each operation gm can be described by a unitary matrix which
acts on one or multiple of these n qubits.

Let g be a k-qubit operation. The corresponding unitary matrix U g is
U g

0,0 U g
0,1 · · · U g

0,2k−1
U g

1,0 U g
1,1 · · · U g

1,2k−1
... ... . . . ...

U g
2k−1,0 U g

2k−1,1 · · · U g
2k−1,2k−1

 ∈ C2k×2k ,
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Gate Matrix Symbol

NOT or X gate
(

0 1
1 0

)

Y gate
(

0 −i
i 0

)
Y

Z gate
(

1 0
0 −1

)
Z

Hadamard gate 1√
2

(
1 1
1 −1

)
H

S gate
(

1 0
0 i

)
S

T gate
(

1 0
0 eiπ/4

)
T

Rotation-Z gate
(
e−iθ/2 0

0 eiθ/2

)
Rzθ

Controlled NOT
(CNOT)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Conditional
phase-shift (CR)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ


Rθ

Table 1.1: Standard quantum gates with their corresponding matrices and symbols
from Ref. [5].

where U g
j,i can be interpreted as the transitioning amplitude from the computa-

tional basis state |i〉 to |j〉. This means that an incoming computational basis
state |i〉 gets a contribution of U g

j,i in the output vector entry corresponding to |j〉.
U g can thus also be written as

U g =
2k−1∑
i,j=0

U g
i,j |j〉 〈i| .
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1.4 Classical simulation of quantum circuits

In quantum computing, gates are specified as k-qubit matrices, even if the en-
tire quantum system features n qubits, where n is typically much larger than k.
However, it is known that an operation acting on the n-qubit state |ψ〉 can be
written as a 2n× 2n unitary matrix, and that the output state can be obtained by
multiplying the amplitude vector of |ψ〉 by this unitary matrix. The construction
of this larger unitary U ∈ C2n×2n from a given U g ∈ C2k×2k can be performed as
follows: First, write

U =
2n−1∑
î,ĵ=0

Uĵ ,̂i |ĵ〉 〈̂i| =
2n−k−1∑
l,m=0

2k−1∑
i,j=0

Um|j,l|i |(m|j)〉 〈(l|i)| ,

where |̂i〉 , |ĵ〉 are n-qubit computational basis states and l|i denotes merging of
the two integers l and j as bit-strings in the order of the qubits in the state vector.
I.e., the bit-pattern of l|i is given by (1) the k qubits upon which U g acts are in
state i and (2) the remaining n− k qubits are in state l.

Since U may act nontrivially only on the k qubits to which U g is applied,

Um|j,l|i = 0 if l 6= m .

As a result,

U =
2n−k−1∑
m=0

2k−1∑
i,j=0

Um|j,m|i |(m|j)〉 〈(m|i)| =
2n−k−1∑
m=0

2k−1∑
i,j=0

U g
j,i |(m|j)〉 〈(m|i)| .

Therefore, to simulate the evolution of the state vector α := (α0, ..., α2n−1)T when
applying the k-qubit gate g which is specified via the complex 2k×2k matrix U g one
proceeds as follows: For each fixed m = 0, 1, ..., 2n−k−1, perform a 2k-dimensional
matrix-vector multiplication βmnew = Ugβm, where βm consists of those values from
α which correspond to computational basis states that have the inactive qubits
in state |m〉, meaning that the first inactive bit is m0 ∈ {0, 1}, the second is
m1 ∈ {0, 1}, and so on. These 2k values are ordered in the usual way such that
βmj corresponds to the target qubits being in the computational basis state j.
After the 2k-dimensional matrix-vector multiplication has been executed, the 2k
values from α are the replaced by their new values βmnew and m is increased by one.
This is then repeated until the last iteration with m = 2n−k − 1 is complete.

In summary, an n-qubit quantum circuit consisting of a sequence of M gates
(g1, g2, ..., gM) can be simulated on a classical computer gate by gate, where each ki-
qubit gate gi involves 2n−ki matrix-vector multiplications of dimension 2ki . These
2ki-dimensional subvectors are extracted from the overall state vector of dimension
2n and, after successful multiplication by the gate matrix, the output is stored back
into the overall state vector.
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1.5 Outline
Thinking about quantum programs in terms of circuits or even matrices makes it
difficult to see the similarity between quantum computers and, e.g., today’s GPUs.
In the following chapter, we thus introduce a methodology for programming and
compiling quantum computers. Subsequently, in chapters 3 and 4, we present two
additional methods for quantum program optimization. The first method uses the
Hoare triples [32] of all subroutines in order to identify optimization opportunities.
In contrast, the second method does not operate at the circuit level. Instead it aims
to optimize the tolerances with which the compiler approximates subroutines that
have no exact representation in terms of the target gate set. The tolerances are
optimized in order to reduce the number of elementary operations while satisfying
a user-specified error bound.

As a consequence, it must be known how the cost of subroutines behaves as a
function of the target accuracy. While upper bounds on these costs may exist, these
have been found to be loose by several orders of magnitude in certain cases [33, 34]
by carrying out numerical studies. The quality of the resulting numerical estimates
can be improved by carrying out larger simulations. To this end, we improve
classical techniques for simulating quantum computers in the second part of this
thesis. This includes a high-performance implementation of a full state simulator
which is presented in chapter 5. It allows speedups of up to 14× when compared
to state-of-the-art simulations of random quantum circuits, which is the worst-
case scenario for our implementation. Furthermore, in a setting where a high-level
description of the quantum circuit is available, a variety of classical shortcuts can
be employed in a process called emulation. We introduce the concept of a quantum
circuit emulator in chapter 6 and compare it to simulation in terms of run time.

When combined, the above methods allow to carry out a wide variety of quan-
tum program optimizations automatically. Similar to classical high-performance
computing, however, manual optimizations have been shown to greatly improve
upon the code generated by design automation and optimizing compilers [8]. In
the third and final part of this thesis, we design and optimize quantum circuits to
evaluate mathematical functions. We develop a new addition circuit in chapter 7
which makes use of qubits that may be in an arbitrary state (and possibly entan-
gled with other qubits in the system) in order to save qubits without resorting
to costly rotation gates [35]. We then use our construction to implement Shor’s
algorithm for factoring with an asymptotic reduction in run time compared to
previous space-efficient implementations. In chapter 8, we develop a parallel poly-
nomial evaluation scheme which allows to approximate piecewise smooth functions
at a cost that is similar to evaluating a single low-degree polynomial. We then use
this scheme to provide gate estimates for several mathematical functions that occur
frequently in the quantum algorithm literature.
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Part I

Compilation and optimization of
quantum programs

11





Introduction to Part I

The first part of this thesis is concerned with the compilation and optimization of
quantum programs. In the first chapter of this part, which is a modified version
of Ref. [1], we propose a software methodology for compiling quantum programs.
We present the tools and layers of abstraction necessary for quantum software
development and discuss backends which can be used before large-scale quantum
hardware is available. Our methodology has since been implemented and released
as ProjectQ [9].

Following this overview of our quantum programming toolchain, we focus on
automatic optimization of quantum programs. In the second chapter, which was
published as Ref. [2], we develop a new optimization methodology. In contrast to
previous work, it is not inspired by or related to optimizations from the realm of
classical compilers such as constant-folding or common subexpression elimination.
Instead, our methodology exploits the structure that is present in superposition
states if subsystems (sets of qubits) are entangled. To this end, it employs the
Hoare triples of all invoked subroutines in order to gather information about said
structure. By combining this information with conditions for sequences of opera-
tions to be trivial, our method is able to exploit optimization opportunities which
could not be identified as such by previous methods.

The final chapter of this part, which was published as Ref. [3], discusses an
entirely different type of optimization. Instead of transforming a given circuit
to an equivalent circuit of lower cost, we consider the compilation step before
such optimizations are applied. In order to generate the circuit for a specific
target system, compilers must choose tolerances for approximations that must
be made during the compilation process. In addition to guaranteeing a given
overall accuracy, compilers may choose these tolerances to also reduce resource
requirements. We detail the workings of such a compiler module and discuss the
benefits and tradeoffs involved by compiling a quantum program to simulate a
transverse-field Ising model.
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Chapter 2

A software methodology for
compiling quantum programs

As a result of the rapid progress in engineering prototypes for quantum computing
devices over recent years, the benefits of a supporting software stack have increased.
Not only does such a stack allow for a more efficient software development process,
but it additionally enables more efficient hardware/software co-design. In particu-
lar, a quantum software stack enables rapid prototyping via repeated compilation
of chosen benchmarks for different hardware constraints. In light of this, several
distinct software efforts have emerged, e.g., Refs. [36, 37].

In this chapter, which is based on Ref. [1], we introduce a software methodology
for compiling quantum programs which, in contrast to previous efforts, employs
concepts from classical high performance computing. In particular, we introduce
a quantum analog of pragma-statements, which allow the compiler to generate
code that is identical to hand-optimized code, despite additional levels of ab-
straction. Furthermore, our methodology allows for several intermediate gate sets
which enables even peephole optimizers to perform fairly powerful optimizations.
In addition to the quantum programming language and the compiler, we discuss
potential backends which can be used before large-scale quantum hardware is avail-
able. Ultimately, the software methodology introduced in this chapter led to the
development of the ProjectQ software framework [9].

2.1 Quantum programs
A quantum program consists of classical and quantum instructions. Some of the
classical instructions are to be executed on the host computer, i.e., the classical
computer which runs the program, and some are to be executed by the lower-level
control hardware. Naturally, all quantum instructions in the code are sent to the
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2.1 Quantum programs

QPU for processing. Upon measuring a qubit, the QPU exposes the outcome to the
classical controller which, in turn, may use this information to determine the next
sequence of quantum instructions that is required to advance the computation.

Examples of such hybrid quantum/classical programs are quantum teleporta-
tion [38], the variational quantum eigensolver [39], and the quantum approximate
optimization algorithm [40]. In each of these algorithms, feedback from the quan-
tum processor is used in order to determine the next steps to advance the overall
computation. The simplest example of the above is teleportation, which is dis-
cussed in the following box.

Example (Quantum Teleportation)

Alice has a qubit in state |ψ〉 := α |0〉 + β |1〉 which she would like to send
to Bob who is currently overseas. Luckily, Alice and Bob decided to share a
Bell pair during their last encounter, which means that they each have one
qubit of

|ΨBP 〉 := 1√
2

(|0〉A |0〉B + |1〉A |1〉B) .

Alice can entangle her qubit in |ψ〉 with her share of the Bell pair using
a controlled NOT gate. All that is left for Alice to do now is to measure
her two qubits, i.e., her share of the Bell pair and her qubit which started
out in |ψ〉 in the Z- and X-basis, respectively, and to send the measurement
outcomes which are just two classical bits to Bob. Conditional on these bits,
Bob can apply a correction such that his share of the Bell pair ends up in
|ψ〉, as desired. In code, Alice runs
CNOT | (psi , bp_A)
H | psi
Measure | (psi , bp_A)
# send measurement outcomes to Bob
msg = bool(psi), bool(bp_A)
send_to (Bob , msg)

Bob receives the message msg and performs two conditional corrections
if msg [1]:

X | bp_B
if msg [0]:

Z | bp_B

From these two code segments, it is easy to see that there is no quantum
channel required between Alice and Bob—the exchange of a quantum state
is performed by using the entanglement between bp_A and bp_B, in addition
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A software methodology for compiling quantum programs

to a classical channel, which is used to transmit merely two classical bits of
information.
Note that this protocol does not violate the No-Cloning Theorem [41] since
Alice measures her qubit and thus collapses |ψ〉 onto |+〉 or |−〉. Further-
more, while the entanglement causes changes performed on one qubit of the
Bell pair to appear instantaneously at the location of its entanglement part-
ner, this alone does not constitute transmission of information. Without the
corrections by Bob, there are only random correlations at a distance. As a
consequence, there occurs no faster-than-light transmission of information.

While code was used to illustrate the details of the example above, quantum cir-
cuits are still the primary way of communicating algorithm constructions in the
quantum computing research community. In a quantum circuit diagram, qubits
are drawn as horizontal lines and operations are drawn on these lines with time
advancing from left to right. Once measured, qubits are projected onto the mea-
surement outcome—either |0〉 or |1〉 and, as a result, they become classical bits.
In order to make this distinction clearly visible in circuit diagrams, classical bits
are drawn as double lines. As an example, the quantum circuit for teleportation
is depicted in Fig. 2.1.

|ΨBP 〉

|ψ〉 H

Z |ψ〉
Figure 2.1: Quantum circuit for the teleportation example. Alice entangles her
qubit in |ψ〉 with her share of the Bell pair |ΨBP 〉 using a CNOT. She then measures
her two qubits in the X- and Z-basis and sends the outcomes to Bob (the classical
bits are represented by double lines) who applies the appropriate correction (X-
and/or Z-gate).

Thus far, we have merely described quantum programs at the level of elemen-
tary quantum gates such as Hadamard, Pauli-{X,Y,Z}, and CNOT gates. In the
literature, this level of programming language is often labeled QASM which is short
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2.2 A toolchain for quantum programming

for quantum assembly. It is worth noting, however, that QASM languages such as
OpenQASM [42] offer even less abstraction than their classical counterparts. For
instance, QASM languages do not feature the reversible analog of an AND gate
as native instructions, let alone additions or multiplications. These have to be
constructed from single- and two-qubit gates [6, 7, 43, 35, 44] that are typically
available in these low-level languages, an example being the gate set

{H,CNOT, T} .

It is clear that means of abstraction from these low-level instructions in combi-
nation with library implementations of commonly used language constructs are
necessary for serious software development. Furthermore, the compiler, which ul-
timately translates from the abstract language to such a low-level representation,
should be able to optimize the code during this translation process. In the follow-
ing sections, we present further features and discuss potential implementations of
a software methodology for compiling quantum programs.

2.2 A toolchain for quantum programming
While programming at the hardware-level has benefits in terms of execution speed
or size of the resulting quantum program, it is inefficient to program at such
a low level of abstraction. It is thus crucial to develop a software stack which
provides the necessary abstraction but, at the same time, does not introduce too
much overhead in the resulting code. Because similar issues arise in classical high-
performance computing, we may borrow ideas from the classical domain in order
to address them. Additionally, new programming language and/or software stack
features are required for constructs that are specific to quantum computing.

2.2.1 Providing abstractions
In a programming language, themes that occur frequently in programs are usu-
ally included in the standard library of the language. If useful for certain often-
reoccurring themes, these may even be added to the language itself, be it to boost
performance or to reduce compilation time. Having such standard functionality
available as modules facilitates code maintenance, reduces development times, and
makes the code less prone to error. Following what has proven effective in classical
computing, we apply the same techniques to develop the programming language of
our methodology. Furthermore, the design of the software toolchain itself should
also allow for code-reuse and it should be quickly adaptable to new or upcoming
quantum hardware. As such, a modular design which is open to extension is re-
quired. In order to optimally reuse existing libraries and compilation functionality
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Figure 2.2: High-level view of our proposed methodology. (reprint from [1])

for classical code, we envision a quantum programming language that is embedded
in an existing classical host language. This allows for short development times of
the framework and lets software developers use their standard tools. As an addi-
tional benefit, interfaces to hardware can be deployed very quickly, especially if the
chosen host language is used in hardware laboratories, as is the case for Python
or C++.

From a high-level perspective, our methodology for compilation operates in five
distinct phases, see Fig. 2.2: In a first phase, the host language is interpreted or
compiled. Then, a series of high- and low-level compilers translates and optimizes
the quantum intermediate representation (QIR) of the program, taking into ac-
count some specifics of the target hardware such as the target gate set. Finally,
the program is made fault-tolerant by employing quantum error correction (QEC)
and the necessary operations are sent to the hardware via low-level QIR (LLQIR).

The quantum program consists of logical operations acting on logical quantum
bits. This means that programmers need not be bothered by qubit errors or the
specifics of the underlying architecture, e.g., the connectivity of the physical qubits
in the device. The translation from the logical description of the algorithm to a
fault-tolerant implementation for the target hardware is performed automatically
by the series of compilers depicted in Fig. 2.2. In addition, programmers can rely
on library implementations in order to speed up their development process. The
importance of having libraries for quantum computing becomes apparent when
implementing quantum algorithms which employ subroutines that, e.g., compute
classical functions on a superposition of inputs. Exponentials, sin(x), and other
trigonometric functions are widely available in classical programming languages
and also find their application in various quantum algorithms [45, 46, 47]. How-
ever, efficient implementations amenable to quantum hardware are rare and some-
times even nonexistent. To remedy this inefficiency in quantum programming, we
propose various libraries that should be available in any language for quantum
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2.2 A toolchain for quantum programming

quantum system user

– qutypes host
language
standard
library

user
defined
librares

– qugates
– qucontrol
– quarithmetic
– qumath
– qualg

Table 2.1: Library components in our software toolchain.

programming. In the third part of this thesis, we address this specific problem in
more detail by designing efficient implementations of mathematical functions for
integer and fixed-point arithmetic [6, 7].

For our toolchain, we envision the library components listed in Table 2.1. As
previously mentioned, we reuse existing tools that are available in and for the
host language in which we embed the quantum programming language. This
includes the standard library of the host language. Furthermore, libraries should
be extensible and user contributions should be made available to other quantum
software developers. Such user-contributed libraries fall under the “user” category.
For our methodology, the “quantum” libraries are the most relevant and thus we
elaborate on the details of its components.

qutypes library. The first quantum library contains a collection of types for
quantum computing and is called qutypes. The most basic type is a (logical)
qubit which can be allocated, operated upon, and deallocated. As an interme-
diate type between the qubit and more abstract types, there is the quantum
register type qureg, which is a list of qubit objects. Such a quantum register
can be interpreted in various ways, the simplest being an integer which we la-
bel quint. Continuing this analogy to classical types, we also envision quantum
versions of fixed- and floating-point numbers, qufixed and qufloat. For all of
these types, operator overloads allow easy manipulation and conversion between
representations.

qugates library. Gates are operations on qubits and the qugates library pro-
vides programmers with a collection of the most common ones. In particular, this
library contains technology-independent gates as well as operations that are very
specific to certain architectures, thereby providing the means to optimize library
functions hardware-specifically.
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qucontrol library. One of the most-encountered themes in quantum comput-
ing is that operations or subroutines are executed controlled on other qubits. The
qucontrol library provides the means to annotate quantum operations accord-
ingly. In particular, the library supports quantum control flow statements which
describe temporary basis changes—so-called compute/uncompute sections—, loops,
and conditional execution which is the quantum analog of an if-then-else block.
While such annotations primarily serve the purpose of reducing code development
times, they can also be used to improve optimization capabilities of the compiler.
This will be discussed in more detail in Sec. 2.2.2.

quarithmetic and qumath libraries. Similar to classical high-performance
computing, arithmetic functions must be optimized for optimal utilization of the
capabilities of the underlying hardware. The quarithmetic and qumath libraries
provide optimized low- and high-level mathematical functions that are tailored to
be executed on a quantum computer. In particular, these implementations are
reversible and optimized for low quantum resource requirements. The qumath
library employs the lower-level functions from quarithmetic such as additions
and multiplications, which may be optimized specifically for the target hardware.
Together, these two libraries provide support for mathematical functions that are
common in the quantum algorithm literature.

qualg library. The quantum algorithm library contains implementations of known
algorithms which may then be used as subroutines in order to develop new ones.
Typical examples of subroutines which occur frequently throughout the algo-
rithm literature are quantum phase estimation (QPE), quantum Fourier transform
(QFT), and amplitude amplification.

2.2.2 Enabling performance
The main downside of introducing abstractions in computing is the possible degra-
dation of code performance. As a remedy, high-level languages may expose all low-
level and even hardware-specific quantum instructions, similar to inline assembly
or Intel® Intrinsics in classical high-level languages such as C or C++. However,
this solution is not sufficient for practical purposes as it provides no benefits over
QASM languages.

In order to enable highly-efficient code even in the presence of abstractions, our
methodology makes use of code annotations such as the control flow statements
from the qucontrol library in order to optimize the code at a more global scale.
The compute/uncompute annotation in combination with a controlled execution,
for example, allows to drastically reduce the number of controlled quantum oper-
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U V U†U V U†
≡

U V U†

Figure 2.3: Controlled execution of a subroutine which contains a compute and
uncompute section can be optimized by only controlling gates which are not part of
the basis change. Thus, the basis changes U and U † require no additional controls.
(reprint from [1])

ations. The compute/uncompute annotation describes a temporary basis change
with operations in between. The basis change occurs with a unitary U , upon which
some action V is performed before the basis change is undone via U † (the inverse
of U). The circuit for executing such a section controlled on one or several qubits
can be optimized as shown in Fig. 2.3 by employing appropriate code annotations.
Namely, only the V -operation must be controlled on the control qubit since, if the
control qubit is zero, U †U = 1 is trivial. If the control qubit is one, the entire
sequence U †V U is applied, as desired. Similar optimizations are possible for quan-
tum if-then-else and loop statements [1]. In particular, controlled adjoint, which
is a special case of an if-then-else block, can be optimized [48].

In addition to code annotations, we use several intermediate gate sets with
optimization passes at each level. This allows to merge or cancel even high-level
gates acting on the same qubits. A compiler which translates the program directly
to low-level gates before optimizing would most-likely miss many optimization
opportunities, especially if rotations have already been approximated by a rotation
synthesis algorithm such as the one in Ref. [27]. The lower the level of gates, the
harder it becomes to reconstruct the origin of a given quantum operation. As a
result, even identifying and merging two successive additions becomes nontrivial
at best.

2.2.3 From logical operations to hardware
After passing through a series of optimizers and translation modules, the high-
level quantum program has been successfully converted to a sequence of low-level
quantum instructions. However, this sequence still consists of logical operations
which act on perfect, logical qubits with arbitrary connectivity.

In order to bridge this gap between logical circuit and actual hardware, the
lowest-level compiler must map the quantum circuit to the connectivity graph of
the target hardware. To this end, it must keep track of the physical locations of
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all qubits and make them adjacent on this graph via swap gates or teleportation,
before they can interact via a multi-qubit gate such as the controlled NOT.

Additionally, if the hardware qubits have noise rates that are too large for
a successful execution of the quantum program in question, the circuit has to
be transformed to a fault-tolerant implementation employing a quantum error
correction protocol such as the surface code [49]. While there exist quantum
analogs of classical repetition codes such as the 9-qubit Shor code [50], the workings
of such protocols are different in quantum computing. The main difference is due
to the quantum No-Cloning Theorem [51], which prevents simple error correction
by having multiple copies of all states available. For an introduction to the topic
of quantum error correction and more details, we refer to Ref. [41].

Currently, quantum hardware is still too limited to run large-scale quantum
error correction protocols. However, it is of great practical interest to have detailed
overhead estimates and circuit-level implementations of various protocols available
in order to determine more accurate and practically relevant error thresholds.

2.2.4 Software and hardware backends
Once a quantum program has been implemented successfully, it can be compiled
and then run on a quantum computer. The caveat being that large-scale quantum
hardware which would enable the execution of nontrivial algorithms does not yet
exist. In particular, at the time of writing, quantum hardware is not yet able
to outperform classical supercomputers at a well-defined computational task such
as the ones in Refs. [52, 53, 54]. In spite of this, implementations are still of
tremendous use even if they cannot be run on the appropriate hardware yet. Our
methodology thus provides a wide variety of different backends, each with its own
specific use cases.

Hardware backends. The primary purpose of a toolchain for quantum com-
puting the compilation of quantum programs for actual quantum hardware. There
are several competing technologies which all are at different stages of the scaling
process. The support for multiple technologies enables comparisons between differ-
ent qubit technologies such as Ref. [55], as well as more efficient hardware/software
co-design.

Classical simulators. In the absence of large-scale quantum computers, it is
important to have the ability to test algorithms and implementations thereof at
small scales. In addition to debugging, simulation results from small problem
sizes can be extrapolated in order to estimate the performance of future large-
scale quantum computing devices. This is important especially because theoretic
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bounds are often off by several orders of magnitude and simulation is the only tool
that allows identifying such discrepancies between theory and practice [33, 34]. In
chapter 5, the implementation of a high-performance quantum circuit simulator is
discussed in great detail.

Classical emulators. Starting from a high-level description of a quantum algo-
rithm, it is typically compiled to single- and two-qubit gates before simulating the
algorithm. This is most likely an artifact from the early days of quantum program-
ming, where algorithms were primarily specified in terms of one- and two-qubit
gates. While this allows for a particularly simple implementation of the classical
simulator, it hides important optimization opportunities. For instance, the quan-
tum Fourier transform can either be decomposed into single- and two-qubit gates,
or it can directly be executed as a (fast) Fourier transform of the state vector,
for which highly-optimized implementations exist [56, 57]. As an additional ben-
efit, emulators allow quick testing of quantum algorithms that make heavy use
of oracles that implement classical functions because they can just call the oracle
without having access to an actual implementation. More details and performance
results are presented in chapters 5 and 6.

Resource counters/estimators. In the search for practical applications of
quantum computing devices, it is crucial to determine the constants that are hid-
den in the Big O notation which is typically used to compare algorithms. To this
end, resource counters and estimators can be used as software backends to our
methodology. Such a backend keeps track of circuit properties such as its size,
width, and depth. Similar to the emulation idea, resource estimators can make
use of the high-level description of the algorithm in order to take shortcuts where
possible. For example, gates with similar or even identical implementation costs
may be grouped together, allowing to estimate the resource requirements by per-
forming the actual translation to hardware-instructions for only one instance of
each such group.

2.2.5 Implementation: ProjectQ
In later work, we implemented this methodology with the described abstractions
and optimizations in collaboration with Damian S. Steiger. This resulted in the
launch of the ProjectQ framework [9]. ProjectQ features all the backends that
were mentioned in the description of our methodology. Furthermore, the benefit
of having code annotations and multiple gate sets with intermediate optimization
passes was investigated subsequently in Ref. [10]. There are several libraries which
extend the functionality of ProjectQ such as RevKit [11], which allows to automat-
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ically translate Python functions to quantum circuits, and FermiLib [12], which
interfaces to classical electronic structure packages and helps to generate quantum
circuits that perform time evolution under the resulting Hamiltonians. For more
details on the ProjectQ framework, we refer to Refs. [9, 58].
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Chapter 3

Using Hoare logic to optimize
quantum programs

The software methodology which was introduced in the previous chapter already
provides several means of optimization. In addition to constant-folding, which
allows to combine multiple gates acting in sequence on some small set of qubits,
optimizations at a more global scale are enabled via code-annotations. These
can be used by the compiler in order to identify and leverage common patterns
in quantum programming such as compute/action/uncompute sequences. Further
optimization opportunities can be created by employing a set of commutation re-
lations [59] to reorder operations. In general, however, such commutator based
approaches incur a cost that is exponential in the number of qubits that the re-
ordered operations act upon. Furthermore, several methods have been developed
for exact circuit synthesis with certain optimality guarantees [60, 61, 62, 63, 64].
However, these methods are suited only for optimization of quantum circuits with
a small number of qubits (or even single-qubit gates in the case of Ref. [63]).

Compilers with scalable optimization capabilities [9, 65, 36, 37, 66, 67] al-
ready allow for significant improvements [10]. Yet, because these optimization
approaches do not take into account the state of the quantum computer through-
out the computation, they fail to identify certain optimization opportunities. A
straightforward way to implement this would be to simulate the entire quantum
program during the optimization process. The difficulty, however, lies in devising
a scalable optimization algorithm.

To this end, we propose to employ the Hoare triples of all invoked subrou-
tines in order to gather information about the state. In order to perform circuit
optimization, this information is then combined with conditions which, for every
given operation, specify under which circumstances the operation is trivial. We
implement this optimization methodology in ProjectQ [9] using the Z3 Theorem
Prover [68] and perform comparisons to demonstrate the benefits of our approach.
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When compared to the state of the art, our optimization methodology achieves
reductions in circuit area of up to 5×. Specifically, it achieves a 2× reduction for
floating-point mantissa renormalization and a 5× reduction for mapping an entan-
gling circuit to a 1D linear chain. In particular, the use of Hoare triples allows our
methodology to perform certain optimizations that would typically be performed
only by humans.

This chapter is a slightly modified version of Ref. [2].

3.1 Quantum programs

In this chapter, we consider a slightly simplified machine model. Namely a com-
bination of a classical von Neumann architecture and quantum circuits which get
sent to the quantum co-processor for execution. We thus decide to ignore the
possibility of additional classical controllers for lower-level tasks, since the focus
lies solely on circuit optimizations. In this setting, the host sends circuits to the
quantum co-processor which can be seen as a sequence of quantum instructions:

Definition 3.1.1: Quantum instruction

Let O |q1, ..., qk〉 denote a quantum instruction. It consists of an operation O
and a k-tuple of qubits (q1, ..., qk), where the operation may be a quantum
gate or a classical instruction (allocation, deallocation, measurement).

Every circuit consists of the following 4 steps:

1. Allocate n qubits in state |0〉⊗n := |0 · · · 0〉 (n zeros)

2. Apply quantum gates to these qubits

3. Measure some or all of the qubits

4. Deallocate measured qubits

Upon completion of the execution of a circuit, the quantum co-processor returns
a set of classical bits, the so-called measurement results. Conditional on these
results, the classical processor may then provide further quantum circuits to eval-
uate in order to solve the computational problem at hand. At the end of the entire
quantum program, all qubits are returned to the deallocated state.
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3.2 Hoare tiples and their use for optimization
Hoare logic [32] is a system which can be used in order to verify the correctness of
a given program. To this end, every subroutine in the program is equipped with
additional information, the so-called Hoare triple, consisting of preconditions, the
function, statement or subroutine to execute, and the corresponding postcondi-
tions. This is written as

{P}F {Q} ,

where P denotes the preconditions, F the function to execute, and Q the postcon-
ditions.

From an abstract point of view, the given program can then be seen as a
sequence of transition rules, where each such rule is given by a Hoare triple. If
each such transition happens in a way that ensures the preconditions of the next
transition, the Hoare triple of the entire program, taking the initial conditions
of the first transition to the postconditions of the final Hoare triple is provably
correct. Whether the specifications of pre- and postconditions actually agree with
the implementation is a different issue that we shall not be concerned with in this
work.

A first step toward optimization via Hoare triples is to provide multiple imple-
mentations that ensure identical postconditions. The most general implementation
assumes minimal preconditions for the operation to be sensible. As a result, this
implementation will incur performance loss in cases where additional conditions
are satisfied that would allow for a less general implementation. Such additional
conditions can be added to the preconditions of another implementation which
uses this additional information to achieve a performance advantage. In a scenario
where these additional preconditions are satisfied, the optimized implementation
may then be chosen automatically by the compiler in order to improve upon the
generic implementation. Next we provide two simple examples in the quantum
domain for this type of optimization.

Example

A straightforward example is that controlled operations U c can be removed
if the control qubit |c〉 is known to be |0〉, or that the control can be removed
and the operation U can be applied directly if the control qubit is in definite
|1〉. Since implementing U c is more expensive than implementing just U ,
either case yields an advantage. In terms of Hoare triples, this can be phrased
as follows:
precondition: Instruction qubit(s) in |c〉 |ψ〉
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operation: Apply U c

postcondition: Instruction qubit(s) in |c〉U c |ψ〉
However, also the identity operation (which has zero implementation cost)
ensures the same postcondition albeit with a more restrictive precondition:
precondition: Instruction qubit(s) in |0〉 |ψ〉
operation: None
postcondition: Instruction qubit(s) in |c〉U c |ψ〉
And similarly for the control qubit in definite |1〉.

Example

A more practical example is addition by a classical constant, i.e., the n-qubit
mapping

|x〉 7→ |x+ c〉 ,

where the compiler can either use the addition circuit from Ref. [6] or, if
extra n clean qubits in |0〉 are available, a full addition circuit such as the
one in Ref. [69] to perform

|x〉 |0〉 7→ |x〉 |c〉 7→ |x+ c〉 |c〉 7→ |x+ c〉 |0〉 ,

which requires O(n) gates as opposed to O(n log n) for the implementation
without additional work qubits in Ref. [6].
The translation to Hoare triples is again straight-forward: With the addi-
tional precondition that n qubits are available as work qubits, the O(n) gate
addition circuit from Ref. [69] ensures the instruction qubits to be in |x+ c〉.

While optimizations mentioned thus far can be performed using Hoare triples,
knowledge of the Hoare triple is not strictly necessary to do so. For example,
simple constant-folding can be used to remove controlled gates, where the control
qubit is in the computational basis state |0〉.

In what follows, we extend the optimization capabilities of compilers to handle
cases which could not be optimized without the additional information that is
provided by Hoare triples.

3.3 Compiler optimization via Hoare logic
In order to exploit the structure in superposition states that is present due to
entanglement for the purpose of optimization, we gather additional information
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about the state of the system via Hoare triples. Because our aim is to optimize
circuits and not to prove correctness of the entire quantum program (which includes
measurements and feedback), we focus on pure states rather than employing the
more general quantum Hoare logic developed in Ref. [70]. In particular, we intro-
duce a formalism to describe the entanglement between the qubits of the system
throughout the execution of the quantum circuit. This entails statements which
assert entanglement descriptions (to be defined next), that is, statements of the
form

“q == f(q, r)”, “q ≥ f(q, r)”, etc.,

where q,r refer to quantum registers and f is a function of two registers returning
one register of bits. Since q,r refer to quantum registers, they may be in super-
position and entangled with other qubits in the system. As a result, we need to
assign a precise meaning to these entanglement description assertions with respect
to the state vector of the entire n-qubit quantum computer,

|ψ〉 =
2n−1∑
i=0

αi |i〉 .

Definition 3.3.1: Entanglement description assertion.

An entanglement description assertion on the n-qubit quantum state |ψ〉
above asserts A(q, r) on |ψ〉, where

A(q, r) = q cmp f(q, r) ,

with cmp being a comparison operator, f : {0, 1}k × {0, 1}m → {0, 1}k
a function on k + m bits returning k bits, and q,r refering to quantum
registers consisting of k and m qubits, respectively. Asserting A(q, r) on |ψ〉
means that

∀i ∈ {0, ..., 2n − 1} : (|αi| > 0 =⇒ A(q(i), r(i))) ,

where q(i), r(i) extract the bits corresponding to the quantum registers q
and r, respectively, from the computational basis state |i〉 = |in−1, ..., i0〉.

With this definition in place, let us revisit the |0〉-control qubit example from
the previous section and cast it as an entanglement description assertion.
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Example

To express that a qubit c is in a definite state |0〉, let f(·, ·) = 0 and cmp
be the equals comparison operator in the above definition. Then A(c,−) =
(c == 0). For the corresponding state |ψ〉, this means that αi = 0 whenever
i corresponds to a state where the control qubit is 1. As a result, the action
of the controlled gate on |ψ〉 is always trivial.

This shows that such assertions can be used to express knowledge about qubits
that are in a definite state—a piece of information which, when combined with
classical constant-folding, can be used for optimization. However, in order to do
so in a more general setting, the optimizer also needs information which specifies
the conditions for an operation to be trivial. We call this information triviality
conditions.

Definition 3.3.2: Triviality condition.

A triviality condition of a quantum operation U is specified using an entan-
glement description assertion that asserts A(q, r) on the quantum state |ψ〉.
The following holds

A(q, r) =⇒ U |ψ〉 = |ψ〉 ,
meaning that U acts as the identity if A(q, r) is satisfied by |ψ〉.

Example

Continuing the |0〉-control qubit example, the triviality condition of the con-
trolled unitary U c would read {c == 0} and, if this is satisfied as in the
previous example, U c can be removed from the circuit.

Using these two definitions, we can thus describe and carry out classical constant-
folding. In order to see that this approach is strictly more powerful in terms of
potential for optimization, consider the following example.

Example

Let |ψ〉 denote the quantum state of a two-qubit quantum computer. Ini-
tially, |ψ〉 = |00〉 and our quantum program consists of two operations: 1)
Prepare a Bell-pair and 2) perform a Swap gate. The Bell-pair prepara-
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tion routine has {q0 == 0, q1 == 0} as preconditions and ensures that
{q0 == q1}. In particular, given that the precondition is satisfied, our Bell-
pair preparation circuit transforms the state |00〉 to

1√
2

(|00〉+ |11〉) ,

The amplitudes of this quantum state are α00 = 1/
√

2, α01 = α10 = 0, and
α11 = 1/

√
2. It is easy to check that

∀i ∈ {0, 1, 2, 3} : |αi| > 0 =⇒ {i0 == i1}

holds, where i0 and i1 denote the 0th and 1st bit of i, respectively. Since the
Swap gate acts trivially if q0 == q1, which is satisfied by the state above,
we see that it can be removed from the circuit.

Since the quantum state above is in a superposition, it is clear that regular
constant-folding would fail to perform this optimization. Using our entanglement
description assertions, however, this becomes feasible. While the Bell-pair Swap
example may be a rather contrived one, we will now present more involved exam-
ples that are of practical interest and that allow for significant resource savings.

3.4 Practical example: Optimizing floating-point
arithmetic

In this section, we discuss the optimization of floating-point arithmetic using en-
tanglement description assertions.

Besides functions that are inherently quantum such as the quantum Fourier
transform or the Hadamard transform [41], quantum computers also need to eval-
uate classical functions albeit on a superposition of inputs. Because the input
is in a superposition, one cannot simply evaluate these functions on a classical
computer as this would require reading out the state of the system, which would
collapse the superposition and, thus, destroy any quantum speedup. Rather, these
functions have to be implemented as quantum gates in order to run them directly
on the quantum computer.

Examples where the evaluation of such classical functions on a quantum com-
puter is necessary are 1) Shor’s algorithm for factoring integers, which requires
an implementation of modular exponentiation [13], and 2) certain algorithms for
solving quantum chemistry problems. In Ref. [71], the authors reduce the asymp-
totic runtime of a chemistry simulation algorithm by computing the entries of
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the Hamiltonian on-the-fly. This involves evaluating the Coulomb potential and
various other mathematical functions which, e.g., describe the chosen orbitals. In
order to provide such functionality, one may start with implementing basic modules
for floating-point arithmetic such as addition and multiplication. These modules
can then be combined to enable evaluating polynomials and further higher-level
mathematical functions.

As a practical example for our optimization methodology, we consider a sub-
routine which is omnipresent in floating-point arithmetic, namely that of renor-
malization. Renormalization is used during floating-point computations in order
to bring intermediate results back into proper floating-point form. This can be
achieved using two subroutines: The first subroutine determines the position p of
the first nonzero bit of the mantissa. The second subroutine then shifts the man-
tissa to the left by the output of the first subroutine. A quantum circuit which
determines the position of the first nonzero bit is shown in Fig. 3.1 and a circuit
which shifts the mantissa |x〉 by |p〉 positions is depicted in Fig. 3.2. In order for
the shift circuit to work properly for any input, it must allocate 2np−1 extra work
qubits in order to catch the overflow from the shifted |x〉, where np is the number
of qubits in the position register |p〉. However, in the case where the input to the
shift circuit gets initialized by the circuit which determines the position of the first
one, such an overflow never occurs. As a result, the 2np − 1 work qubits can be
eliminated from the combined circuit.

However, to identify this optimization from the circuit description (combine
circuits in Fig. 3.1 and Fig. 3.2) is nontrivial and without some description of the
action of gates or entire subroutines, such an optimization becomes completely
infeasible for large circuits (as it would require simulation thereof for all inputs).
We thus introduce a notion of how gates and subroutines interact by providing
appropriate entanglement description assertions.

For this concrete example, take the postcondition of determine_first_one,
which asserts that the first pos qubits of x are zero, i.e.,

∀i ∈ 0..pos-1 : x[i] == 0 ,

where pos and x are entangled quantum variables. We can express this equivalently
as an entanglement description assertion with

AFO(x, p) = (x < 2n−p) ,

where x is interpreted as an integer with x0 as the most-significant bit (MSB)
and p corresponds to the position register pos from above with p0 being the least-
significant bit (LSB). Using this postcondition, we now optimize the circuit in
Fig. 3.2, which achieves the desired shift. Clearly, the red Fredkin gates can be
removed since they act on newly allocated qubits which are zero (the postcondition
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|f = 1〉

|p〉

|x〉

Figure 3.1: Example of a circuit which finds the first nonzero bit of |x〉 and stores
its position in |p〉 where |x〉 is a 4-qubit register and the position register |p〉 consists
of two qubits. The flag qubit |f〉 is one as long as the first one has not been found.

|p〉

|000〉

|x〉

Figure 3.2: Optimization of the shift circuit which can be performed if |p〉 is the
output of the circuit which determines the position of the first nonzero bit, see
Fig. 3.1. All colored Fredkin gates [72] can be removed using the postconditions of
the gates in Fig. 3.1 on |p〉. As a result, all 2np − 1 work qubits can be eliminated
(dotted lines) since no gates act on them.

of q = allocate(n) is that q == 0). The left-most blue Fredkin gate is a Swap
gate controlled on the 0-th bit of |p〉 and thus acts trivially if p0 == 0. Further-
more, the Swap itself is trivial if x0 == 0 because all ancilla qubits are still in |0〉.
Combining these two triviality conditions of the controlled Swap gate with the
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postcondition above yields that the blue Fredkin gate may act nontrivially only if

(p > 0) ∧ (x < 2n−p) ∧ (x0 6= 0) ,

where x0 denotes the MSB of the n-qubit register x. Clearly, these conditions
cannot hold simultaneously and, as a result, the first blue Fredkin gate in Fig. 3.2
can be removed. Combining the postconditions of the Fredkin gates with AFO(x, p)
yields a new assertion with

Anew(x, p) = (2−p0x < 2n−p)
= (x < 2n−p+p0) ,

because if the first bit of the position register p0 is one, we have just shifted all of
x by one position. Since we successfully removed the first blue Fredkin gate, we
can employ regular constant-folding to cancel the second blue Fredkin gate as well
(all ancilla qubits are still in |0〉). For the final two blue Fredkin gates, note that
they act nontrivially only if

(p1 6= 0) ∧ ((x0 6= 0) ∨ (x1 6= 0)) .

From which we can use p1 6= 0 and combine it with the updated postcondition with
a case-distinction on p0: If p0 is zero, then p ≥ 2 and if p0 is one, we have that
p ≥ 3 and that there is a shift of +1 in the exponent of the updated postcondition.
Thus, in both cases,

x < 2n−2 ,

and hence, the two most-significant bits x0, x1 of x must be zero. The action of the
remaining two blue Fredkin gates is therefore always trivial and they can also be
removed from the circuit. Finally, since none of the allocated overflow qubits will
be used anymore throughout the computation (as their content is always trivial
in this application), they will eventually get deallocated without any operations
having acted on them. It is then a simple local optimization to cancel allocations
with subsequent deallocations, allowing to reduce the width of the resulting circuit
by 2np − 1 qubits, as desired.

While in this example we used explicit postconditions of determine_first-
_one, we demonstrate in the implementation section that it is enough to provide
post- and triviality conditions of three operations—NOT, Swap, and Allocate—,
in addition to the triviality condition of the control modifier, which turns a given
gate U into its controlled version U c.

Furthermore, we note that such optimization opportunities also arise when
using a fixed-point representation. For example, carrying out range reductions by
2k in order to evaluate functions such as

log2(y) = log2(x2−k) = log2(x) + log2(2−k) = log2(x)− k ,
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(c) Circuit for LNN after optimization.
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(b) Circuit for LNN before Hoare optimization.
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Figure 3.3: Optimizing a chain of CNOTs for a linear nearest-neighbor (LNN)
architecture by employing the Hoare triple for a CNOT which can be obtained
by combining the ctrl modifier with the Hoare triple of the Pauli X gate. The
benefit of our optimization can be seen clearly when comparing the circuits in (b)
and (c): No Swaps are necessary in (c), resulting in much lower gate count and
circuit depth.

with x ∈ [1, 2) allows for a very similar optimization opportunity: When deter-
mining x and k, one can shift y without using ancilla qubits, which is analogous
to our optimization for floating-point renormalization.

3.5 Formalization and generalization

In this section, we formalize the deduction rules necessary to carry out all opti-
mization examples mentioned thus far before introducing a generalization which
is strictly more powerful.
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3.5.1 Formalization of our basic methodology
In order to formalize the basics of our methodology, we first define the Hoare triples
of the quantum subroutines that are required for our examples.{

q = ∅;n ∈ N
}
q = Alloc(n)

{
q = |0〉⊗n

}
{
q = |0〉⊗n

}
Dealloc(q)

{
q = ∅

}
{
qi = A, qj = B

}
Swap(qi, qj)

{
qi = B, qj = A

}
{
q = A,A ∈ {0, 1}

}
X(q)

{
q = A⊕ 1

}
where X(q) denotes application of a Pauli-X gate to qubit q. From the pre- and
postconditions of the Swap operation, it is also apparent that a Swap is trivial if
qi == qj; a fact which we already used in our examples.

In addition to the Hoare triples above, we require a formal description of the
control modifier, which turns a given quantum subroutine U into its controlled
version U c, where c refers to the control qubit. The corresponding Hoare triple is{

c ∈ {0, 1}, q = |ψ〉
}
control(U)(c, q)

{
q = U c |ψ〉

}
,

where U c denotes U raised to the c-th power, i.e., it is U if c = 1 and U c = 1 if
c = 0.

The Hoare triple of the control modifier can be combined in arbitrary ways
with the Hoare triples of our subroutines. In particular, a combination of the
Swap routine with the control modifier yields the rules that were used to remove
trivial Fredkin gates in the circuit in Fig. 3.2. Combining it with the NOT or Pauli
X gate, on the other hand, lets us optimize the Bell-pair example where, after an
initial Hadamard gate H on |00〉, the controlled NOT gate was applied as follows

(H ⊗ 1) |0〉 |0〉 = 1√
2

(|0〉+ |1〉) |0〉 CNOT7→ 1√
2

(|00〉+ |11〉) .

Since this controlled NOT gate above flips the qubit in |0〉 if the control qubit is
one, we immediately get the postconditions for the two qubits q0 and q1

{q1 = Xq0 |0〉} =⇒ {q1 == q0} ,

by combining the two Hoare triples. Together with the triviality condition of the
Swap gate acting on two qubits qi and qj,

{qi == qj} ,

we can again remove the Swap gate from the circuit of the Bell-pair example.
Similarly, the Hoare triple for CNOT can be used to identify the optimization

opportunity in the following example.
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Example

In addition to circuit optimizations at the logical level, entanglement descrip-
tion assertions and triviality conditions can be used to optimize the circuit
for a specific target architecture. Consider the compilation steps outlined in
Fig. 3.3. After mapping the circuit in (a) to a linear nearest-neighbor con-
nectivity with additional optimizations to cancel intermediate partial Swap
chains results in the circuit (b). As before, we can employ our Hoare logic
optimizer to remove trivial CNOT gates using the fact that after each red
CNOT gate acting on qi and qi+1, it holds that qi == qi+1. The optimized
circuit is shown in Fig. 3.3(c).

3.5.2 Generalized optimization methodology
Generalizing the basic methodology above allows to greatly increase its optimiza-
tion capabilities. Thus far, our optimizer considers single gates at any given point
together with all available postconditions of previously executed subroutines. For
each such gate, it then determines whether it can be removed from the circuit
without altering its output. The generalized strategy considers multiple gates and
checks whether the supplied postconditions allow to deduce that the combined ac-
tion of these gates is trivial, in which case all of these gates can be removed from
the circuit.

Definition 3.5.1: Set of control qubits.

For an instruction U |q1, ..., qk〉 acting with a (unitary) gate U on k qubits,
a set of qubits S ⊂ {q1, ..., qk} is called a set of control qubits if there exists
a sequence of Swap gates s1, ..., st acting on pairs from {q1, ..., qk} and a
unitary U ′ such that with S denoting the unitary which performs s1, ..., st,
the following three statements hold.

(1) SUS† = (1− |1 · · · 1〉 〈1 · · · 1|)⊗ 1+ |1 · · · 1〉 〈1 · · · 1| ⊗ U ′ ,

(2) the sequence of Swaps (s1, ..., st) permutes (q1, ..., qk) such that the first
|S| qubits of the resulting tuple are in S, and (3) S is the largest such set.
For instructions where U is not unitary, the set of control qubits is empty.

We note that there may be multiple distinct sets of control qubits for a given
instruction. For instructions where multiple choices exist, we choose a set of control
qubits once and keep it invariant throughout the optimization process.
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|q0〉
|q1〉
|q2〉 U U†

Figure 3.4: Simple example of our multi-gate optimization methodology: The first
gate is applied if and only if the last gate is applied. Since the U gate is the inverse
of U †, we can cancel the two doubly-controlled gates.

Example (Set of control qubits may be nonunique).

As an example of an instruction where multiple choices exist for the set of
control qubits, consider the Zc operation applied to |q1q0〉, where Z acts
with a (−1)–phase on |1〉 and leaves |0〉 invariant. It is easy to check that

Zc = |0〉 〈0| ⊗ 1+ |1〉 〈1| ⊗ Z
= 1⊗ |0〉 〈0|+ Z ⊗ |1〉 〈1| ,

since for Zc to be nontrivial, both qubits need to be in |1〉. Either qubit can
thus be chosen to be the control qubit and, thus, the set of control qubits is
nonunique.

Definition 3.5.2: Target qubit.

A qubit q in an instruction U |..., q, ...〉 is called a target qubit if it is not in
the set of control qubits of the instruction U |..., q, ...〉.

Definition 3.5.3: Target-successive instructions.

Two instructions I1, I2 with identical target qubits are called target-
successive if no other instructions are scheduled to be executed between
I1 and I2 that involve the target qubits in a way that does not commute
with neither I1 nor I2.

Our generalized methodology considersM ≥ 1 target-successive instructions at
once, where allM instructions have the same t target qubits and arbitrary controls.
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|x1〉
|y1〉
|x2〉
|y2〉
|x3〉
|y3〉

|cmp〉
|c〉

Figure 3.5: Three-qubit example of a modular adder subroutine which performs
the modular reduction. It consists of a comparison, the result of which is stored
in the qubit |cmp〉, and a conditional subtraction. In this setting, our generalized
methodology is able to deduce that the two red multi-controlled NOT gates can
be canceled, allowing to completely remove the carry qubit |c〉.

Ignoring the control qubits, let U1, ..., UM denote the t-qubit gate matrices of these
instructions. An optimization can be performed if

U1 · · ·UM = 12t×2t

and the postconditions on the control qubits are such that either all or none of the
gates get executed. A simple example withM = 2 and t = 1 is depicted in Fig. 3.4,
where the two doubly-controlled gates can be canceled using the reasoning above.

We now give a practical example where our multi-gate optimization strategy
performs better than the single-gate methodology discussed thus far.

Example

Consider a circuit which performs addition modulo a number N that is
stored in another quantum register, i.e.,

|a〉 |b〉 |N〉 7→ |(a+ b) modN〉 |b〉 |N〉 .

A possible implementation is to first perform the regular addition, followed
by a modular reduction if the result is greater than |N〉. Since we only
subtract N if (a + b) ≥ N , the result will always be non-negative and, as a
consequence, the final carry will always be zero and the qubit can thus be
removed from the circuit. When using the addition circuit from Ref. [69], the
optimizer needs to remove the two red multi-controlled NOT gates in Fig. 3.5
which act on the carry qubit in order to exploit this optimization opportu-
nity. Neither of these gates is trivial by itself but in this setting, either both
or none of the two gates are triggered. As a result, this optimization can
only be performed using our generalized approach. The achieved reduction
in circuit width and depth can be found in the results section.
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3.6 Implementation using ProjectQ and Z3
In this section, we discuss our implementation of this optimization methodology.
For each quantum operation for which we would like to add nontrivial optimization
capabilities using our approach, we require

1. Postconditions

2. Triviality conditions

Additionally, preconditions may be supplied which would allow to test the program
for correctness. For our generalized methodology, we only require the triviality
condition of the control modifier in addition to information which lets us determine
whether a sequence of operations U1, ..., UM acts as the identity. However, the
latter is already available in ProjectQ.

We extend the definitions of several gate operations in ProjectQ with their
respective post- and triviality conditions by providing additional member functions
which employ the Z3 Theorem Prover package [68] to express these conditions.
These member functions are invoked by our custom optimizing compiler engine,
which then employs the Z3 solver in order to check whether certain operations are
guaranteed to be trivial, in which case they can be removed.

While we do not elaborate on the details of the ProjectQ compilation frame-
work, we point out that optimization and compilation is carried out during circuit
generation time. As a result, all parameters of the circuit are already known. In
particular, the length of quantum registers is determined since all classical input
to the quantum program has been supplied. The circuit can thus be optimized
specifically to the problem size in question—a feature that is crucial especially for
near- and intermediate-term devices which have very limited resources, making
such additional optimizations very valuable. In turn, this enables more powerful
optimizations when employing our methodology because we are not required to
carry out parametric proofs. It is of course theoretically possible to prove such
statements by induction, however, there is only limited support in automatic the-
orem provers such as Z3 [68]. Since all classical parameters have a definite value
upon circuit generation, we can unroll many quantified statements and thereby
generate statements that are much easier to (dis)prove.

As an example, we show how the definition of the ProjectQ Swap operation was
altered in order to enable our optimization engine to carry out the optimizations
discussed so far. The definition of SwapGate was extended by merely the following
two member functions:
class SwapGate ( Se l f I nve r s eGate ) :

[ . . . ]
def t r i v i a l _ i f ( s e l f , x1 , x2 ) :
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return ( x1 == x2 )

def po s t c ond i t i on s ( s e l f , x1 , x2 , y1 , y2 ) :
return And( x1 == y2 , x2 == y1 )

Clearly, these are very minor modifications which provide exactly the informa-
tion required: Postconditions and triviality conditions of the Swap gate. The
trivial_if member function of every gate is invoked by the optimizer with one
symbolic boolean variable for each target qubit of the gate (two in this case). The
returned expression is negated and then added to the solver together with the ex-
pression ctrls_one = And(v[cqb1], v[cqb2], ...), which is true if and only
if all variables v[cqbi] corresponding to control qubits cqbi are true / equal to
one:
s o l v e r . push ( )
s o l v e r . add (And( ctr l s_one , Not (cmd . gate . t r i v i a l _ i f (∗ target_vars ) ) ) )
i f s o l v e r . check ( ) == unsat :

skip_current_op ( )
s o l v e r . pop ( )

where target_vars are the Z3 variables corresponding to the target qubits of the
current gate before it is executed. If the solver finds a solution which satisfies all
previous conditions and the negated conditions of trivial_if, the gate cannot
be removed since it may have a nontrivial effect on the state of the quantum
computer |ψ〉 at that point. If there is no such solution, on the other hand, this
means that the gate is trivial and it can thus be removed from the circuit. After
this triviality check, the conditions of the Z3 solver are updated according to the
postconditions of the operation which hold irrespective of whether the gate was
removed: For each target qubit, a new boolean Z3 variable is created and the
postconditions member function of the gate relates the old variables (before
applying the gate) to the new ones. In particular, operations are handled by
adding two Z3 Implies(...) statements:

1. The control qubit(s) being all ones implies that the new target variables are
now related to the old ones via the postconditions function, i.e.,
Imp l i e s ( ctr l s_one , cmd . gate . po s t c ond i t i on s (∗( target_vars+

new_target_vars ) ) )

is added to the solver, where new_target_vars are the Z3 variables that
correspond to the target qubits after applying the gate.

2. The control qubit(s) not being all ones implies that the new target variables
are equal to the old ones, i.e., for all i we add the expression
Imp l i e s (Not ( c t r l s_one ) , new_target_vars [ i ] == target_vars [ i ] ) )
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to the solver.

If there are no control qubits, (1) and (2) are of the form

{true =⇒ y = f(x)} and {false =⇒ y = x} ,

respectively and, therefore, are equivalent to stating that y = f(x) holds after the
gate has been applied, where f is given by the postconditions member function.

Also, note that the ProjectQ Swap gate derives from SelfInverseGate, stating
that the Swap operation is its own inverse. This information is useful for our
generalized optimization approach, which is employed whenever the circuit buffer
size of the optimizer exceeds a user-defined threshold. When this happens, the
stored circuit is traversed in order to identify target-successive operations which
may be removed from the circuit. For each such sequence of gates, the Z3 solver
is used to determine whether there is an assignment to the control qubits which
agrees with all previous postconditions and which causes 0 < m < M operations
to be executed. If there is no such assignment, either all or none of these M
operations are executed, meaning that they always act trivially. As a result, the
entire sequence of gates can be removed from the circuit.

3.7 Results and comparison
In this section, we report the results that were obtained using the implementation
of our optimization methodology. We analyze the performance of our Hoare logic
based optimizer with respect to different quantum circuits. The first circuit per-
forms floating-point mantissa renormalization, see Figs. 3.1 and 3.2, the second
entangles a linear chain of qubits, see Fig. 3.3, and the third performs modular
reduction, see Fig. 3.5, which is a subroutine that is used in constructing a mod-
ular adder. For all circuits, we compare two compiler setups—one which features
a simple local optimizer capable of merging/canceling subsequent operations that
act on the same qubits, and a second configuration which additionally contains
our Hoare logic based optimizer. As a gate set, we choose {CNOT, X, H, S, T, T †}
for all configurations.

In order to compare these compiler configurations, we use circuit width, depth,
and area as benchmark numbers. The circuit area is computed as

AC := depth× width

where the depth is the depth of the directed acyclic graph (DAG) associated with
the circuit, and the width corresponds to the maximal number of alive qubits at
any point throughout the execution of the circuit.
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Figure 3.6: Optimizer comparison for the floating-point renormalization circuit
with different number of qubits n for the size of the mantissa. The position register
was chosen as p := dlog2 ne. The Hoare optimizer achieves a roughly 2× reduction
in circuit area over the local optimizer from ProjectQ [9].

Number of bits n Max. circuit width DAG depth
4 9 (11) 168 (315)
8 17 (19) 592 (639)
16 33 (35) 1240 (1287)
32 65 (67) 2536 (2583)
64 129 (131) 5128 (5175)
128 257 (259) 10312 (10359)

Table 3.1: Optimizer comparison for a modular reduction circuit on n qubits using
the addition circuit in Ref. [69]. Our optimizer is able to remove the carry qubit
of the conditional subtraction since it is always in |0〉 at the end of the circuit and
not involved in the computation when non-zero. We note that this is only possible
using our multi-gate or generalized approach.

The comparisons can be found in Fig. 3.6 and Fig. 3.7 for the first and second
circuit, respectively. Both cases clearly demonstrate the benefits of our Hoare logic
based optimizer, which is able to reduce the circuit area by a factor of approxi-
mately 2× and 5× for the first and second circuit, respectively.

In the first circuit, our optimizer is able to eliminate 2np − 1 ancilla qubits in
addition to a few Fredkin gates. It is thus to be expected that the circuit area is
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Figure 3.7: Optimizer comparison for the entangling circuit on n qubits depicted
in Fig. 3.3. The Hoare optimizer achieves a 5× improvement in circuit depth for
large n.

reduced by approximately a factor of two.
In the second circuit, all CNOT gates resulting from swap operations can be

removed when using the Hoare based optimization strategy. We thus expect the
circuit depth to grow by 4(n − 2) gates for n ≥ 2 when turning off Hoare logic
optimization. The ratio between the resulting circuit depths for n ≥ 2 is thus

4(n− 2) + n

n
= 5n− 8

n
n→∞→ 5 ,

which agrees with the experimental results in Fig. 3.7 and constitutes an up to 5×
improvement over state-of-the-art optimizers.

The third circuit, which is a subroutine for modular addition, can be optimized
by identifying a pattern similar (but more complex) to the one shown in Fig. 3.4.
In this case, the target qubit is the carry qubit of the controlled subtraction and
upon removing the two multi-controlled NOT operations, no operations on the
carry qubit remain. As a result, this additional qubit can be removed from the
circuit. Furthermore, due to the removal of multi-controlled NOT gates, no extra
work qubits are required for Toffoli ladders [26].
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3.8 Summary and future work
We have presented an optimization methodology that extends the scope of auto-
matic circuit optimizations. In particular, our methodology allows to carry out
certain optimizations that are typically performed by humans. This is achieved
by taking into account post- and triviality conditions of all subroutines that get
invoked by the quantum program that is being optimized. Our implementation
in ProjectQ has managed to achieve up to 5× reduction in circuit area for our
examples when compared to the state of the art.

Our generalized methodology currently performs optimizations if the overall
action of a sequence of gates is trivial. Future work could address more general
cases where, e.g., control qubits are in a state that only triggers subsets of these
gates that, when combined, correspond to trivial operations. Additionally, sym-
bolic computation on entanglement description assertions may be incorporated.
This would allow to optimize iterative procedures such as the Newton-Raphson
method which can be used to evaluate high-level arithmetic functions on a quan-
tum computer [7]: For many such functions, the initial guesses can be chosen to be
very simple (e.g., integer powers of two). The first iteration of a Newton-Raphson
method may then be applied symbolically to the output of the initial guess rou-
tine. Such optimizations have been shown to yield significant resource savings
when performed manually [7]. Automating such procedures would thus allow for
the same benefits without the need for labor-intensive manual code optimization.
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Chapter 4

Reducing resource requirements
by optimizing error tolerances

Quantum program optimizations usually take place at the circuit level, such as
the ones introduced in this thesis thus far. However, there are several choices
that must be made by the compiler before these circuits are fully determined. For
the purpose of quantum program optimization, a crucial choice in the compilation
process is the selection of approximation error tolerances. While programmers may
have pretty good estimates of the overall error which a given program can tolerate
without significantly affecting its output, this is no longer true at the level of, e.g.,
single- and two-qubit gates.

To see that the interplay among subroutines with respect to such errors is
nontrivial, consider the example of performing phase estimation on some unitary
operation. Increasing the accuracy of quantum phase estimation, requires more
applications of the controlled unitary operation. This, in turn, requires each of
these controlled operations to be executed with higher accuracy. The resource
requirements thus increase two-fold: Once due to the larger number of controlled
unitary operators, and once because accuracy requirements increase as the number
of operations increases.

Automating this process enables a better choice of accuracy parameters and,
in turn, lower resource requirements. In this chapter, which is a slightly modified
version of Ref. [3], we develop an optimization methodology to achieve this task.
For demonstration purposes, we use our annealing-based optimizer to optimize
error tolerances of a transverse-field Ising model simulation and report the achieved
reduction in cost.
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4.1 Compilation and approximation
In order to estimate the required resources of a given quantum algorithm, the high-
level representation of the algorithm must be translated to a universal low-level
set of operations that can be realized on the target hardware. One of the standard
gate sets that is often considered is the so-called Clifford+T gate set, which can
be generated from a few single-qubit operations and the CNOT (controlled-NOT)
gate. In particular, arbitrary single-qubit rotations must be translated to this dis-
crete gate set employing a rotation synthesis algorithm [73, 63], where the resulting
gate sequences get longer as the desired accuracy is increased. Therefore, besides
the problem of compiling abstract high-level functions to the native gate set, the
resulting approximation errors need to be managed in a way that ensures that
the resulting code performs the desired overall operation within a certain (user-
specified) tolerance. We address this problem by introducing a method capable of
handling these errors automatically.

The need for approximation. While it is not possible to perform error cor-
rection over a continuous set of quantum operations (gates), this can be achieved
over a discrete gate set such as the aforementioned Clifford+T gate set. As a con-
sequence, certain operations must be approximated using gates from this discrete
set. An example is the operation which achieves a rotation around the z-axis,

Rzθ =
(
e−iθ/2 0

0 eiθ/2

)
.

To implement such a gate over Clifford+T , synthesis algorithms such as the ones
in Refs. [73, 63] can be used. Given the angle θ of this gate, such a rotation
synthesis algorithm will produce a sequence of O(log ε−1

R ) Clifford+T gates which
approximate Rzθ up to a given tolerance εR. We measure approximation error εR
with respect to distance in operator norm. As we focus on unitary channels this is
equivalent to diamond distance, i.e., approximation errors can be composed safely.

In most error correction protocols, the T -gate is the most expensive operation
to realize, as it cannot be executed natively but requires a distillation protocol to
distill many noisy magic states into one good state, which can then be used to apply
the gate. As a consequence, it is crucial to reduce the number of these T -gates as
much as possible in order to allow executing a certain quantum computation.

Compilation of quantum programs. The job of a quantum program compiler
is to translate a high-level description of a given quantum program to hardware-
specific machine-level instructions. As in classical computing, such compilation
frameworks can be implemented in a hardware-agnostic fashion by introducing
backend-independent intermediate representations of the quantum code [1].
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ε

QPE(U)

cU · · · cU QFT †

ε1 εk−1 εk

R1 Rn· · · R1 Rn· · · CR1 CRm· · ·

εk+1 εk+n εk+n+1 εk+2n εk+2n+1 εk+2n+m

Figure 4.1: Abstract depiction of the compilation process for a quantum phase
estimation (QPE) applied to a given unitary U . The parameters εi which get
introduced during the compilation must be chosen such that the overall target
accuracy ε is achieved while reducing the resulting cost as much as possible.

During the compilation process, it is crucial to optimize as much as possible in
order to reduce the overall depth of the resulting circuit to keep the overhead of
the required quantum error correction schemes manageable. Optimizations include
quantum versions of constant-folding (such as merging consecutive rotation gates,
or even additions by constants) and recognition of compute/action/uncompute
sections to reduce the number of controlled gates [1]. To allow such optimizations,
it is important to introduce multiple layers of abstractions instead of compiling
directly down to low-level machine instructions [1, 9], which would make it im-
possible to recognize, e.g., two consecutive additions by constants. Even canceling
a gate followed by its inverse becomes computationally hard, or even impossible
once continuous gates have been approximated.

To translate an intermediate representation to the next lower level of abstrac-
tion, a set of decomposition rules is used, some of which introduce additional
errors which can be made arbitrarily small at the cost of an increasing circuit size
or depth, which in turn implies a larger overhead when applying quantum error
correction. Therefore, it is important to choose these error tolerances such that the
computation succeeds with high probability given the available resources (number
and quality of qubits). See Fig. 4.1 for an abstract depiction of the compilation
process of a quantum phase estimation on a given unitary U . At each level of
abstraction, the compiler introduces additional accuracy parameters (in the figure
denoted by εi) which must be chosen such that

1. the overall error lies within the specifications of the algorithm and
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2. the implementation cost is as low as possible while 1) is satisfied.
As mentioned above, it is important to measure approximation errors in a way
that is composable to avoid potential issues in underreporting actual approxima-
tion errors [74, 75] which could be devastating when composing complex quantum
algorithms. This leads to diamond distance as the preferred way to measure close-
ness to the target operation as it composes. As unraveling a complex quantum
algorithm eventually leads to primitive gates that are unitary—such as the men-
tioned Rzθ rotations which are implemented on subsystem of a constant number
of qubits—bounding the approximation error in operator norm implies error in
diamond norm, i.e., estimates of approximation error can be composed.

4.2 Error-propagation in quantum circuits
The time-evolution of a closed quantum system can be described by a unitary
operator. As a consequence, each time-step of our quantum computer can be
described by a unitary matrix of dimension 2n × 2n (excluding measurement),
where n denotes the number of quantum bits (qubits). When decomposing such
a quantum operation U into a sequence of lower-level operations UM · · ·U1, the
resulting total error can be estimated from the individual errors ε of the lower-
level gates as follows:

Lemma 4.2.1: Unitary error

Given a unitary decomposition of U such that U = UM · UM−1 · · ·U1 and
unitaries Vi which approximate the unitary operators Ui such that ‖Vi −
Ui‖ < εi ∀i, the total error can be bounded as follows:

‖U − VM · · ·V1‖ ≤
M∑
i=1

εi.

This lemma can be shown straightforwardly from the ‘hybrid argument’ [76]
based on the triangle inequality and submultiplicativity of ‖ · ‖ with ‖U‖ ≤ 1.

Note that using only this Lemma in the compilation process to automatically
optimize the individual εi would make the resulting optimization problem infeasi-
bly large. What is even worse is that the number of parameters to optimize would
vary throughout the optimization process since the number of lower-level gates
changes when implementing a higher-level operation at a different accuracy, which
in turn changes the number of distinct εi. To address these two issues, we intro-
duce Theorem 4.2.1 which generalizes Lemma 4.2.1. First, however, we require the
following definitions.
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Definition 4.2.1: Partitioning of subroutines

Let VM(ε) · · ·V1 be an approximate decomposition of the target unitary U
such that ‖U − VM(ε) · · ·V1‖ ≤ ε. A set of subroutine sets S(U, ε) =
{S1, ..., SK} is a partitioning of subroutines of U if ∀i∃!k : Vi ∈ Sk and
we denote by S(V ) the function which returns the subroutine set S such
that V ∈ S.

Such a partitioning will be used to assign to each Vi the accuracy εS(Vi) = εSk
with which all Vi ∈ Sk are implemented. In order to decompose the cost of U ,
however, we also need the notion of a cost-respecting partitioning of subroutines of
U and the costs of its subsets:

Definition 4.2.2: Cost-respecting partitioning of subroutines

et S(U, ε) = {S1, ..., SK} be a set of subroutine sets. S(U, ε) is a cost-
respecting partitioning of subroutines of U w.r.t. a given cost measure
C(U, ε) if ∀ε, i, j, k : (Vi ∈ Sk ∧ Vj ∈ Sk ⇒ C(Vi, ε) = C(Vj, ε)). The cost of
a subroutine set S is then well-defined and given by C(S, ε) := C(V, ε) for
any V ∈ S.

With these definitions in place, we are equipped to generalize Lemma 4.2.1.

Theorem 4.2.1: Decomposition of cost

Let S(U, ε) = {S1, ..., SK} be a cost-respecting partitioning of subroutines
for a given decomposition of U w.r.t. the cost measure C(U, ε) denoting the
number of elementary gates required to implement U . Then the cost of U
can be expressed in terms of the costs of all subroutine sets S ∈ S(U, εU) as
follows

C(U, ε) =
∑

S∈S(U,εU )
C(S, εS)fS(εU)

with
∑

S∈S(U,εU )
εSfS(εU) ≤ ε− εU ,

where fS(εU) gives the number of subroutines in the decomposition of U
that are in S, given that the decomposition of U would introduce error εU
if all subroutines were to be implemented exactly and εS denotes the error
in implementing subroutines that are in S.
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Proof. It is easy to see that the cost C(U, ε) can be decomposed into a sum of the
costs of all subroutines Vi. Furthermore, since εV = εS ∀V ∈ S,

C(U, ε) =
∑
i

C(Vi, εVi)

=
∑
i

C(Vi, εS(Vi))

=
∑
S∈S
|{i : Vi ∈ S}|C(S, εS)

and fS(εU) := |{i : Vi ∈ S}| ∀S ∈ S(U, εU).
To prove that the overall error remains bounded by ε, let Ũ denote the unitary
which is obtained by applying the decomposition rule for U with accuracy εU , i.e.,
‖U − Ũ‖ ≤ εU (where all subroutines are implemented exactly). Furthermore, let
V denote the unitary which will ultimately be executed by the quantum computer,
i.e., the unitary which is obtained after all decomposition rules and approximations
have been applied. By the triangle inequality and Lemma 4.2.1,

‖U − V ‖ ≤ ‖U − Ũ‖+ ‖Ũ − V ‖
≤ εU +

∑
S∈S(U,εU )

εSfS(εU)

≤ ε

In Fig. 4.1, for example, the left-most cU box gets ε1 as its error budget.
Depending on the implementation details of cU , some of this budget may already
be used to decompose cU into its subroutines, even assuming that all subroutines
of cU are implemented exactly. The remaining error budget is then distributed
among its subroutines, which is exactly the statement of the above theorem.

The decomposition of the cost can be performed at different levels of granu-
larity. This translates into, e.g., having a larger set S(U, ε) and more functions
fS(εU) that are equal to 1. The two extreme cases are

1. fS(ε) = 1 ∀S ∈ S(U, ε), |S(U, ε)| = #gates needed to implement U :
A different εU for each gate,

2. fS(ε) = #gates needed to implement U ∀S ∈ S(U, ε), |S(U, ε)| = 1:
The same ε∅ for all gates.

Therefore, this solves the first issue of Lemma 4.2.1: In a practical implementa-
tion, the size of the set S(U, ε) can be adaptively chosen such that the resulting
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Figure 4.2: Quantum circuit of a quantum phase estimation applied to the time
evolution operator U = e−itH , where H is the Hamiltonian of the quantum system
being simulated, e.g., a transverse-field Ising model as in the text. After the
inverse quantum Fourier transform (QFT†), a measurement yields the phase which
was picked up by the input state. For the ground state |ψ0〉, this is U |ψ0〉 =
e−iHt |ψ0〉 = e−iE0t |ψ0〉, allowing to extract (a (k + 1)-bit approximation of) the
energy E0 of |ψ0〉.

optimization problem which is of the form

(ε?S1 , · · · , ε
?
SN

) ∈ arg minCProgram(εS1 , · · · , εSN )
such that εProgram(ε?S1 , · · · , ε

?
SN

) ≤ ε

for a user- or application-defined over-all tolerance ε, can be solved using a reason-
able amount of resources. Moreover, the costs of optimization can be reduced by
initializing the initial trial parameters εSi to the corresponding solution accuracies
of a lower-dimensional optimization problem where S(U, ε) had fewer distinct sub-
routines. This approach is similar to multi-grid schemes which are used to solve
partial differential equations.

The second issue with a direct application of Lemma 4.2.1 is the varying number
of optimization parameters, which is also resolved by Theorem 4.2.1. Of course one
can simply make S(U, ε) tremendously large such that most of the corresponding
fS(ε) are zero. This, however, is a rather inefficient solution which would also
be possible when using Lemma 4.2.1 directly. A better approach is to inspect
S(U, ε) for different ε and to then choose A auxiliary subroutine sets Sa1 , ..., SaA
such that each additional subroutine V a

k which appears when changing ε (but is
not a member of any S of the original S(U, ε)) falls into exactly one of these sets.
The original set S(U, ε) can then be extended by these auxiliary sets before running
the optimization procedure. Again, the level of granularity of these auxiliary sets
and thus the number of such sets A can be tuned according to the resources that
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are available to solve the resulting optimization problem.

4.3 Example application

As an example application, we consider the simulation of a quantum mechanical
system called the transverse-field Ising model [77] (TFIM), which is governed by
the Hamiltonian

Ĥ = −
∑
〈i,j〉

Jijσ
i
zσ

j
z −

∑
i

Γiσix,

where Jij are coupling constants and Γi denotes the strength of the transverse field
at location i. σix and σiz are the Pauli matrices, i.e.,

σx =
(

0 1
1 0

)
and σz =

(
1 0
0 −1

)

acting on the i-th spin. The sum over 〈i, j〉 loops over all pairs of sites (i, j) which
are connected. In our example, this corresponds to nearest-neighbor sites on a one-
dimensional spin chain (with periodic boundary conditions) of length N . Given
an approximation |ψ̃0〉 to the ground state |ψ0〉 of Ĥ, we would like to determine
the ground state energy E0 such that

Ĥ |ψ0〉 = E0 |ψ0〉 .

It is well-known that quantum phase estimation (QPE) can be used to achieve this
task which leads to a general circuit structure as in Fig. 4.2.

Individual compilation stages. We now analyze the QPE algorithm for TFIM
ground state estimation and the resulting optimization problem for approximation
errors. First note that if the overlap between |ψ0〉 and |ψ̃0〉 is large, a successful
application of QPE followed by a measurement of the energy register will col-
lapse the state vector onto |ψ0〉 and output E0 with high probability (namely
p = | 〈ψ̃0|ψ0〉 |2).

There are various ways to implement QPE [41], but the simplest to analyze is
the coherent QPE followed by a measurement of all control qubits, see Fig. 4.2
for an illustration of the circuit. This procedure requires 16π/εQPE applications
of (the controlled version of) the time-evolution operator Uδ = exp(−iδĤ) for a
success probability of 1/2, where εQPE denotes the desired accuracy (bit-resolution
of the resulting eigenvalues) [33]. Using a Trotter decomposition of Uδ, i.e., for
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large M

Uδ ≈
(
UJ

δ
M
UΓ

δ
M

)M
=
(
e−i

δ
M

∑
i
Ji,i+1σizσ

i+1
z e−i

δ
M

∑
i
Γiσix
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allows to implement the global propagator Uδ using a sequence of local operations.
These consist of z- and x-rotations in addition to nearest-neighbor CNOT gates
to compute the parity (before the z-rotation and again after the z-rotation to
uncompute the parity). The rotation angles are θz = 2 δ

M
Ji,i+1 and θx = −2 δ

M
Γi

for z- and x-rotations, respectively. The extra factor of two arises from the the
definitions of the Rz and Rx gates, see Sec. 4.1.

In order to apply error correction to run the resulting circuit on actual hard-
ware, these rotations can be decomposed into a sequence of Clifford+T gates using
rotation synthesis. Such a discrete approximation up to an accuracy of εR features
O(log ε−1

R ) T-gates if the algorithms in [73, 63] are used, where even the constants
hidden in the O notation were explicitly determined.

Casting the example into our framework. The first compilation step is to
resolve the QPE library call. In this case, it is known that the cost of QPE applied
to a general propagator U is

C(QPEU , ε) = 16π
εQPE

C(cU, εU),

where cU denotes the controlled version of the unitary U , i.e.,

cU := |0〉 〈0| ⊗ 1+ |1〉 〈1| ⊗ U.

Furthermore, the chosen tolerances must satisfy

16π
εQPE

εU ≤ ε− εQPE.

The next step is to approximate the propagator using a Trotter decomposition.
Depending on the order of the Trotter formula being used, this yields

C(cU, εU) = M(εTrotter)(C(cU1, εU1) + C(cU2, εU2))
with M(εTrotter)(εU1 + εU2) ≤ εU − εTrotter.
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In the experiments section, we will choose M(εTrotter) ∝ 1√
εTrotter

as an example.
Finally, approximating the (controlled) rotations in cU1 and cU2 by employing
rotation synthesis,

C(cUi, εUi) = 2N · 4 log ε−1
R

with 2NεR ≤ εUi for i ∈ {1, 2}.

Collecting all of these terms and using that C(cU1, ·) = C(cU2, ·) yields

C(QPEU , ε) = 16π
εQPE

M(εTrotter) · 2 · 2N · 4 log ε−1
R ,

with εQPE + 16π
εQPE

(2M(εTrotter) · 2NεR + εTrotter) ≤ ε.

Note that this example is a typical application for a quantum computer which at
the same time can serve as a proxy for other, more complex simulation algorithms.

While the individual compilation stages may be different for other applica-
tions, the basic principle of iterative decomposition and approximation during
compilation is ubiquitous. In particular, a similar compilation procedure would be
employed when performing quantum chemistry simulations, be it using a Trotter-
based approach [78] or an approach that is based on a truncated Taylor series [79].

4.4 Implementation and numerical results
In this section, we present implementation details and numerical results of our
error management module. While the optimization procedure becomes harder for
fine-grained cost and error analysis, the benefits in terms of the cost of the resulting
circuit are substantial.

Optimization methodology. We use a two-mode annealing procedure for opti-
mization, in which two objective functions are reduced as follows: The first mode
is active whenever the current overall error is larger than the target accuracy ε. In
this case, it performs annealing until the target accuracy has been reached. At this
point, the second mode becomes active. It performs annealing-based optimization
to reduce the circuit cost function. After each such step, it switches back to the
error-reduction subroutine if the overall error increased above ε.

Both annealing-based optimization modes follow the same scheme, which con-
sists of increasing/decreasing a randomly chosen εi by multiplying/dividing it by
a random factor f ∈ (1, 1 + δ], where δ can be tuned to achieve an acceptance rate
of roughly 50%. Then, the new objective function value is determined, followed by
either a rejection of the proposed change in εi or an acceptance with probability

paccept = min(1, e−β∆E),
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β = 0
ε = (0.1, 0.1, · · · , 0.1)
co s t = get_cost (ε)
e r r o r = get_tota l_error (ε)
for s tep in range ( num_steps ) :

i = f l o o r ( rnd ( ) ∗ len ( eps ) )
old_ε = ε
i f rnd ( ) < 0 . 5 :
εi ∗= 1 + (1 − rnd ( ) ) ∗ δ

else :
εi /= 1 + (1 − rnd ( ) ) ∗ δ

i f e r r o r <= goa l_error :
# reduce co s t
∆E = get_cost (ε) − co s t

else :
# reduce e r r o r
∆E = get_tota l_error (ε) − e r r o r

paccept = min(1 , e−β∆E )
i f rnd ( ) > paccept :
ε = old_ε

β += ∆β

Listing 4.1: High-level description of the annealing-based algorithm to solve the
resulting optimization problem. The actual implementation features different
scaling constants for ∆E depending on the mode (error reduction vs. cost
reduction).

where β = T−1 and T denotes the annealing temperature. This means, in particu-
lar, that moves which do not increase the energy, i.e., ∆E ≤ 0 are always accepted.
The pseudo-code of this algorithm can be found in Listing 4.1.

Results. Using the example of a transverse-field Ising model which was discussed
in Sec. 4.3, we determine the benefits of our error management module by running
two experiments. The first experiment aims at assessing the difference between
a feasible solution, i.e., values εi which produce an overall error that is less than
the user-defined tolerance, and an optimized feasible solution. In the first case, we
only run the first mode until a feasible solution is obtained and in the latter, we
employ both modes as outlined above. Fig. 4.3a depicts the costs of the resulting
circuit as a function of the desired overall accuracy ε.

The second experiment aims to show the benefit of an increased number of εi
parameters in the same example. The difference between the circuit costs when
using just two such parameters (i.e., setting εR = εTrotter) and using all three is
depicted in Fig. 4.3b.
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Figure 4.3: Numerical results for the optimization problem resulting from the
transverse-field Ising model example discussed in Sec. 4.3. Improving the first
encountered feasible solution by further optimization allows to reduce the cost by
almost a factor of two and the number of different parameters can influence the
resulting cost by several orders of magnitude.

Finally, we measure the robustness of the optimization procedure by introduc-
ing redundant parameters, i.e., additional rotation gate synthesis tolerances εRi ,
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Figure 4.5: Runtime for finding an initial feasible solution which was then opti-
mized further in order to reduce the circuit cost. As expected, the time increases
quadratically with the number of parameters.

where the optimal choice would be εR = εRi = εRj for all i, j. However, because
the resulting optimization problem features more parameters, it is harder to solve
and the final circuit cost is expected to be higher. In addition, the time it takes
to find an initial feasible solution will grow. See Figs. 4.4 and 4.5 for the results

61



4.5 Conclusion

which indicate that this approach is scalable to hundreds of variables if the goal
is to find a feasible solution. However, as the number of parameters grows, it
becomes increasingly harder to simultaneously optimize for the cost of the circuit.
This could be observed, e.g., with 100 additional (redundant) parameters, where
further optimization of the feasible solution reduced the cost from 1.65908 ·1012 to
1.10752 · 1012, which is far from the almost 2x improvement which was observed
for smaller systems in Fig. 4.3a. Also, the scaling of the runtime in Fig. 4.5 can be
explained since new updates are proposed by selecting i ∈ [0, ..., N − 1] uniformly
at random (followed by either increasing or decreasing εi). Due to this random
walk over i ∈ [0, ..., N − 1], the overall runtime is also expected to behave like the
expected runtime of a random walk and, therefore, to be in O(N2).

4.5 Conclusion
We have presented a methodology for managing approximation errors in compiling
quantum algorithms. Given that the way in which the overall target error is
distributed among subroutines greatly influences the resource requirements, it is
crucial to optimize this process, in particular for large-scale quantum algorithms
that are composed of many subroutines. Our scheme leverages an annealing-based
procedure to find an initial feasible solution which then is optimized further.

Our scheme for error management only addresses errors that occur in approxi-
mations during the compilation process into a fault-tolerant gate set. Future work
might include hardware errors, e.g., systematic over- or under-rotations of gates
performed by the target device. Furthermore, additional numerical studies for
various quantum algorithms can be performed in order to arrive at heuristics for
choosing the number of optimization parameters. Moreover, building on our error
management methodology, one can automate the entire process of resource estima-
tion for certain subclasses of quantum algorithms. This would yield a useful tool
for assessing the practicality of known quantum algorithms, similar to the analysis
carried out manually in Ref. [33].
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Part II

Improved simulation of quantum
computers
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Introduction to Part II

In chapter 4, the introduced methodology for managing approximation errors
mainly employed error bounds which have been derived analytically. However,
these bounds are often very loose when considering specific instances. To optimize
bounds for these cases, numerical simulations can be employed [33, 34]. In partic-
ular, smaller instances can be simulated using classical (super)computers and the
results can then be extrapolated to larger system sizes. By pushing the boundary
of what is simulatable toward larger problem sizes, the quality of these predictive
estimates can be improved.

To this end, we discuss two ways to extend the simulation capabilities of classi-
cal computers in part II of this thesis. In chapter 5, we employ one of the world’s
largest supercomputers Cori II at LBNL together with code optimization at every
level of parallelism—instruction-level, thread-level, node-level, and cluster-level—
allowing a reduction in time-to-solution over the state of the art by more than one
order of magnitude.

In chapter 6, we introduce the concept of quantum circuit emulation. This
new approach makes use of the mathematical description of the algorithm being
simulated in order to take classical shortcuts. While this primarily leads to a
reduction in run time and memory footprint, emulation can also be used to perform
analyses of approximation errors as it offers a way to test against ideal, error-free
implementations.
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Chapter 5

0.5 petabyte simulation of a
45-qubit quantum circuit

This chapter is a slightly modified version of Ref. [4]. The gate scheduling optimizer
(Sec. 5.1.6) was implemented by Damian S. Steiger.

Experimental devices featuring close to 50 qubits will soon be available and
may be able to perform well-defined computational tasks which would classically
require the world’s most powerful supercomputers. Going even beyond these ca-
pabilities means entering the realm of Quantum Supremacy [52, 80]. While one of
the computational tasks proposed to demonstrate this supremacy—the execution
of low-depth random quantum circuits, see Fig. 5.1—is not scientifically useful
on its own, running such circuits is still of great use to calibrate, validate, and
benchmark near-term quantum devices [52].

Several implementations of quantum circuit simulators exist [81]. The mas-
sively parallel simulator from [82, 83] was used to simulate 42 qubits on the Jülich
supercomputer in 2010, which set the new world record in number of simulated
quantum bits. Recently, qHiPSTER [84] was specialized for the simulation of
quantum supremacy circuits and then used to simulate these circuits up to 42
qubits [52].

In this chapter, we improve the strong scaling behavior of the compute kernels
underlying quantum circuit simulation in order to reduce time-to-solution when
employing multi- and many-core processors. In the multi-node domain, we em-
ploy a communication scheme similar to [83] and introduce an additional layer of
optimization to reduce the amount of communication: We apply a clustering algo-
rithm to the quantum circuit in order to improve the scheduling of quantum gate
operations. While this pre-computation terminates in 1-3 seconds on a laptop, it
greatly reduces the number of communication steps. We then simulate quantum
supremacy circuits of various sizes and report speedups of over one order of mag-
nitude at every scale. Finally, we simulate a 45-qubit quantum supremacy circuit

67
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Figure 5.1: Low-depth random quantum circuit proposed by Google to show quan-
tum supremacy [52]. We generated identical circuits using the following rules: At
clock cycle 0, a Hadamard gate is applied to each qubit. Afterwards, eight dif-
ferent patterns of controlled Z (CZ) gates are applied repeatedly until the desired
circuit depth is achieved. See the 8 different CZ patterns above in clock cycles 1-8
for a 6 × 6 qubit circuit, where the CZ gates are represented by a line between
two qubits. This pattern ensures that all possible two qubit interactions on this
2D nearest neighbor architecture are executed every 8 cycles. In addition to the
CZ gates, single qubit gates are applied to all qubits which in the previous cycle
(but not in the current cycle) performed a CZ gate. The single qubit gates are
randomly chosen to be either a T (red), X1/2 (blue), or Y 1/2 (yellow) gate, except
that the second single-qubit gate on each qubit (the first is the Hadamard gate
in cycle 0) is always a T gate and when randomly choosing a single-qubit gate, it
must be different from the previous single-qubit gate on that qubit.

on the Cori II supercomputing system using 0.5 petabytes of memory and 8, 192
nodes. To our knowledge, this constitutes a new record in the maximal number
of simulated qubits as of May 2017. The classical simulation of such circuits is
believed to be impossible already for 49 qubits which, according to Ref. [85], is
the threshold for quantum computers outperforming the largest supercomputers
available today at the task of sampling from the output distribution of random
low-depth quantum circuits. While we do not carry out a classical simulation of
49 qubits, we provide numerical evidence that this may be possible. Our opti-
mizations allow reducing the number of communication steps required to simulate
the entire circuit to just two all-to-alls, making it possible to use, e.g., solid-state
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Figure 5.2: Roofline plots illustrating the performance improvements from
Sec. 5.1.2 and 5.1.3. Step 1 introduces lazy evaluation, making the applica-
tion more compute-bound. Step 2 adds explicit vectorization and instruction
re-ordering, followed by step 3 which applies blocking for registers in addition
to a pre-computation on the gate matrix, re-ordering and permuting the complex-
valued matrix entries to improve the FLOP/instruction ratio. An additional op-
timization specific to KNL is the blocking for MCDRAM, which is introduced in
step 1.

drives if the available memory is less than the 8 petabytes required.
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5.1 Optimizations
Our simulator was implemented and optimized using a layered approach. The first
layer aims to improve the single-core performance of our quantum gate kernels by
employing explicit vectorization using compiler intrinsics, instruction reordering,
and blocking to reduce register-spilling. The second layer uses OpenMP to enable
a good strong scaling behavior on an entire node. The third and final layer imple-
ments the inter-node communication scheme using MPI. This allows to simulate
up to 45 qubits on current supercomputers, in addition to reducing the time-to-
solution when executing quantum circuits featuring fewer qubits.

5.1.1 Standard optimizations
In order to be able to simulate large systems, it is important not to actually
store the 2n × 2n matrix acting on the state vector. Instead, one can exploit its
regular structure and implement methods which, given the state vector, mimic
a multiplication by this matrix. A standard implementation features two state
vectors (one input, one output). To determine one entry of the output vector, two
complex multiplications and one complex addition have to be carried out on two
entries of the input vector when applying a general single-qubit gate. In total,
there are thus

2 · (4[mul] + 2[add]) + 2[add] = 14 FLOP
per complex entry of the output state vector. One complex double-precision entry
requires 16 bytes of memory and the input vector has to be loaded from memory
and the output vector has to be written back to memory. The operational intensity
is therefore less than 1/2, which shows that this application is memory-bandwidth
bound on most systems.

5.1.2 Single-core
In order to reduce the memory requirements by a factor of 2x, this complex sparse
matrix-vector multiplication can be performed in-place, at the cost of a cache-
unfriendly access pattern. Moreover, k-qubit gates require more operations for
larger k, allowing to better utilize hardware with strong compute capabilities. In
fact, the number of operations grows exponentially with k, since applying a k-qubit
gate amounts to performing one scalar product of dimension 2k per (output) entry.

To apply a k-qubit gate (of dimension 2k × 2k) to a state vector of size 2n,
where n denotes the number of qubits, the entries corresponding to all 2k indices
of the gate matrix have to be loaded into a 2k-sized temporary vector, which then
gets multiplied by the matrix before it is written back to the state vector. The
indices of these state vector entries, when represented in binary, are bit-strings of
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the form cn−k−1xik−1 ...cj...xi1 ...c0, where i0, i1, ..., ik−1 denote the k qubits indices
to which the gate is being applied. Extracting and combining the bits xij from the
index of an entry, i.e.,

x = xik−1 ...xi1xi0 ,

yields the index of this entry with respect to the temporary vector. All 2k entries
which have an identical c = cn−k−1cn−k−2...c0 index substring are part of this
matrix-vector multiplication. Once all entries have been gathered, multiplied by
the matrix, and stored back into the state vector, the next c′ = c + 1 index
substring can be dealt with. In total, this amounts to performing 2n−k complex
matrix-vector multiplications of dimension 2k.

A first observation is that the same matrix is used 2n−k times. One can thus
permute the matrix entries before-hand in order to always have sorted qubit in-
dices, which results in memory accesses to occur in a more local fashion.

When applying the matrix-vector product, doing so in the usual manner, i.e.,

ṽl =
2k−1∑
i=0

ml,ivi ,

would require all entries of the temporary vector v to be in register (and already
loaded from memory). In order to address this issue, we employ blocking of the
computation and determine the block size using an automatic code-generation /
benchmarking feedback loop. For each block index b = 0, 1, ..., 2k

B
− 1, all indices l

of the temporary output vector ṽ are updated according to

ṽl +=
∑
j<B

ml,i(b,j)vi(b,j) ,

where i(b, j) = b ·B + j, before moving on to the next block.
We employ explicit vectorization to parallelize updates for consecutive values

of l. Since we are dealing with complex double-precision values, this theoretically
allows to speed up the execution by a factor of 2x or even 4x when using AVX
or AVX512, respectively. Denoting by aR and aI the real and imaginary parts of
a, respectively, we now inspect the update above more closely. Multiplying one
complex entry vl = (vR, vI) of the temporary vector v with one complex entry of
the gate matrix m = (mR,mI) and summing the result into the temporary output
vector ṽ can be written as follows:

(ṽR, ṽI) += (vR ·mR − vI ·mI , vI ·mR + vR ·mI) (5.1)

Yet, implementing this update results in wasted compute resources due to artificial
dependencies and additional permutes. However, these instructions can be re-
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ordered as follows

(ṽR, ṽI) += (vR ·mR, vI ·mR) (5.2)
(ṽR, ṽI) += (vI · −1 ·mI , vR ·mI) (5.3)

in order to increase the maximal achievable performance. Namely, having both
(mR,mR) and (−1·mI ,mI) available, this update requires only two fused multiply-
accumulate instructions instead of several individual multiplications, additions,
and permutations. This is an improvement in both FLOP/instruction and FLOP/-
FMA ratios.

Note that vl can be permuted once upon loading (and then kept in register),
as it is re-used for 2k such complex multiplications. Also, since the matrix m is
used in 2n−k matrix-vector multiplications, the pre-computation to build up these
two matrices consisting of (mR,mR) and (−1 ·mI ,mI) is essentially free.

5.1.3 Single-node
The optimizations discussed above do not change the fact that the operational
intensity for applying a 1-qubit gate is very low, making it harder to fully utilize the
power of multi- and manycore processors (see, e.g., Fig. 5.10). Yet, as mentioned
previously, applying a k-qubit gate requires more operations for larger values of k
and as long as the application remains memory bound, larger gates can be applied
in (almost) the same amount of time. The benefit—besides increased operational
intensity—is that larger gates can be used to execute an entire sequence of single-
and two-qubit gates at once. In particular, multiple gates acting on k different
qubits can be combined into one large k-qubit gate.

Which value of k to choose depends on the peak performance, the memory-
bandwidth, the cache-size & associativity of the system, and the circuit to simulate.
The cache specifications are important especially when gates are applied to qubits
with larger indices, which cause memory access strides of large powers of two.
For low-associativity caches, this causes conflicts to arise already for small kernel
sizes. Since 2k values need to be loaded from the state vector (which are at
least 2m apart, where m is the lowest qubit index) for each of the 2n−k matrix-
vector multiplications, a 2k-way cache should map the corresponding cache-lines
to different locations, no matter how large m is. This allows to directly access
these values from cache for the next matrix-vector multiplication. See Fig. 5.6 and
Fig. 5.9 for experimental results.

Finally, these k-qubit gate kernels are parallelized using OpenMP with NUMA-
aware initialization of the state vector to ensure scaling beyond 1 NUMA node.
Depending on the qubits to which the gate is applied, the outer-most loop may per-
form very few iterations, prohibiting a good strong scaling behavior. The OpenMP
collapse directive remedies this problem.
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Please see Fig. 5.2a and Fig. 5.2b, which show the improvements in performance
when applying all mentioned optimizations and running the kernels on one socket
of Edison or Cori II, which feature one 12-core Intel® Xeon® Processor E5-2695
v2 and one 68-core Intel® Xeon Phi™ Processor 7250 (KNL), respectively.

5.1.4 Multi-node
The simulation of quantum computers featuring many more than 30 qubits requires
multiple nodes in order for the state vector to fit into memory. We use MPI to
communicate between 2g nodes, each node having its own state vector of size 2l,
where g and l denote the number of global and local qubits, respectively. Gate
operations on local qubits, i.e., qubits with index i < l, require no communication.
Qubits with index i ≥ l, on the other hand, do require communication.

There are two basic schemes which can be used to perform multi-node quantum
circuit simulations. The first [82] keeps global qubits global and applies global
gates by employing 2 pair-wise exchanges of half the state vector. The second
scheme [83] swaps global qubits with local ones, applies gates to local qubits in
the usual fashion and, if need be, swaps them again with global qubits. Note that
swapping in a global qubit and then immediately swapping it back out requires the
same amount of communication as the first scheme. We thus expect the global-to-
local scheme to perform better and focus on this scheme.

1-Qubit Example (see Fig. 5.3a). For the case of two ranks, swapping the
highest-order qubit (highest bit in the local index) with the global qubit (first bit
of the rank number) can be achieved as follows: The first block of rank 0 remains
unchanged, since swapping 0 with 0 has no effect. Swapping 0 (global) and 1
(local) for the second block requires sending the entire block to rank 1, where
these coefficients are associated with the local qubit being 0. Proceeding in this
manner results in an exchange of the colored blocks, which is equivalent to an
all-to-all.

2-Qubit Example (see Fig. 5.3b). To swap two global qubits with the two
highest-order local qubits for the case of four ranks, each rank sends its i-th quar-
ter of the state vector to rank number i. Therefore, all identically-colored state
vector parts are exchanged, which results again in one all-to-all.

Additionally, as done in [83], we generalize this scheme to swap multiple or
even all global qubits with local ones. Yet, in contrast to [83], we do not iteratively
copy out parts of the state vector and carry out the pair-wise exchanges manually.
Instead, we employ higher-level abstractions to achieve the same task, with the
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(a) Single-qubit swap.
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11 00... 01... 10... 11...

(b) Two-qubit swap.

Figure 5.3: Illustration of a single- and multi-qubit global-to-local swap using
one (group-) all-to-all. The blocks labeled, e.g., 01... represent the coefficients
corresponding to the global basis state which starts with the bit-string r01, where
r is the bit-representation of the rank (see text).

benefit that optimized implementations for, e.g., specific network topologies are
likely to be already available. A q-qubit global-to-local swap, which exchanges q
global with q local qubits, can be achieved using 1 group-local all-to-all for each
of the 2g−q groups of processes. Therefore, turning all global qubits into local
ones amounts to executing one all-to-all on the MPI_COMM_WORLD communicator.
This allows swapping the k qubits with highest local index with k global ones.
In order to allow for arbitrary local qubits to be exchanged, we first use our
optimized kernels to achieve local swaps between highest-index qubits and those
to be swapped. We then perform the group-local all-to-all and, if need be, another
local swap (with lower-index qubits) in order to improve data locality in our k-
qubit gate kernels.

5.1.5 Global gate specialization
While a general global gate always requires communication, there are a few com-
mon ones which do not. Examples include the controlled-NOT gate (or controlled-
X) which, when applied to global qubits, causes merely a re-numbering of ranks.
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The (diagonal) controlled-Z gate either turns into a conditional global phase or a
local Z-gate which, depending on the rank, is executed or not. Finally, the T-gate
is also diagonal and results in a global phase, which can be absorbed into the next
gate matrix to be applied. Making use of such insights allows to further reduce
the number of global-to-local swaps without increasing the amount of computation
performed locally.

For 36-qubit quantum supremacy circuits, this optimization enables a reduction
of the required communication by another factor of 2x: Only one global-to-local
swap is required to run the entire depth-25 circuit. For 42- and 45-qubit circuits,
2 global-to-local swaps are necessary, whereas 3 are required without gate special-
ization.

5.1.6 Circuit optimizations: Gate scheduling and qubit
mapping

In addition to performing implementation optimizations, also the circuit requires
optimization in order to reduce the number of communication steps and to use
our highly-tuned kernels in a more efficient manner. We will demonstrate the
different optimizations for gate scheduling and qubit mapping using the quantum
supremacy circuits from Ref. [52], for which we also present performance results in
the next section. Our optimizations are general and can be applied to any quantum
circuit. In fact, these quantum supremacy circuits happen to be designed in a way
that is least suitable for these kinds of performance optimizations. We thus expect
even larger improvements when employing these techniques for the simulation of
other circuits.

The construction of these random, low-depth quantum circuits is shown in
Fig. 5.1. These circuits are designed to be run on a quantum computer architecture
featuring a 2D nearest-neighbor connectivity graph. By design, all possible two
qubit gates are applied within 8 cycles, which makes the system highly entangled.
Note that a simulator can skip the initial Hadamard gates in cycle 0 and initialize
the wave function directly to (2−n2 , ..., 2−n2 )T , instead of starting in state |0...0〉 =
(1, 0, ..., 0)T . Furthermore, we do not simulate the final CZ gates as they only alter
the phases of the probability amplitudes αi, but not the probabilities pi = |αi|2
which we are interested in.

Gate scheduling

The most important optimization on the quantum circuit is gate scheduling, as
it drastically reduces the amount of communication in the multi-node setting and
also the number of k-qubit gate kernels on the single-node level. The optimizations
can be broken into three steps:
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1. Minimize number of communication steps In a first optimization step,
gate scheduling minimizes the number of global-to-local swaps which is the most
important parameter in the multi-node setting. Executing every clock-cycle of the
circuit on its own requires at least one communication step for every cycle which
features a non-diagonal global gate.

However, as explained in the multi-node strategy, it is beneficial not to execute
those global gates but rather swap global qubits with local qubits and then exe-
cute these gates locally. In order for this scheme to be most beneficial, the gate
scheduling algorithm reorders (if possible) the gates into stages, where each stage
consists of a sequence of quantum gates acting only on local qubits, see Fig. 5.4.
Gates acting on the same qubit never commute for quantum supremacy circuits
by design, making classical simulation harder. Nevertheless, we can reorder gates
which act on different qubits as they commute trivially. After completing a stage,
some local qubits are swapped with global qubits, and a new stage is started. This
scheme reduces the number of communication steps significantly. A depth-25 42-
qubit supremacy circuit requires only two global-to-local swaps, see Fig. 5.5b. An
important feature of our gate scheduling algorithm is that the number of global-
to-local swaps is mostly independent of the number of local qubits (29, 30, 31,
or 32). This allows for a good strong scaling behavior. Fig. 5.5a shows how the
number of global-to-local swaps behaves as a function of circuit depth.

We decided to always swap global qubits with the lowest-order local qubits to
arrive at an upper bound for the number of communication steps required. In
addition, we apply a cheap search algorithm to find better local qubits to swap
with. In case of a 36-qubit supremacy circuit, this results in a 2x reduction in
the number of global-to-local swaps, from two swaps to just one. Note that our
stage-finding algorithm assumes the worst-case scenario, in which all randomly
picked global single-qubit gates are dense, meaning that we cannot apply our gate
specialization for T gates to reduce the amount of communication.

2. Minimize number of k-qubit gates In a second step, we schedule all the
gates within a stage such that we can merge sequences of consecutive 1- or 2-qubit
gates into a k-qubit gate and execute this k-qubit gate instead of many single- and
two-qubit gates. See Fig. 5.4, which shows how such a cluster with k = 3 can be
built. We greedily try to increase the number of qubits k within a cluster while still
maintaining the condition that k ≤ kmax, where kmax is the largest k for which
the k-qubit gate kernel still shows good performance on the target system. To
reduce the over-all number of clusters, we perform a small local search in order to
build the largest cluster with gates not yet assigned, before assigning the remaining
gates to new clusters. We summarize the required number of clusters to execute
a quantum supremacy circuit in Table 5.1. Clearly, even for these circuits, more
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Figure 5.4: Example of gate scheduling for a circuit with CZ gates and dense
single-qubit rotations gates (R). Note that we use gate specialization for CZ gates,
which means we can apply them without communication on global qubits. First,
instead of applying the gates cycle by cycle, we identify the largest first stage of
gates which can be applied without communication. These are all the gates on the
left of the solid red line. Second, we schedule the gates within a stage into clusters.
For example, we can combine all the gates on the left of the dashed green line into
one 3-qubit gate instead of applying 7 individual gates.

than k gates can be merged into one k-qubit cluster on average.

3. Local adjustments of global-to-local swaps The last cluster within each
stage tends to contain a lower number of single- and two-qubit gates. In order to
increase the average number of gates in each cluster and thereby decrease the total
number of clusters in the circuit, we try to remove the last clusters of each stage
by performing the global-to-local swap earlier if this is possible without increasing
the total number of global-to-local swaps.
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Figure 5.5: Scaling of the required number of communication steps for quantum
supremacy circuits as a function of circuit depth (a) or number of qubits (b). The
lower two panels show the number of global gates which require communication
if executed individually as in Ref. [52]. In contrast, the top two panels show the
number of global-to-local swaps required to execute the full circuit when using our
strategy of reordering gates and swapping global with local qubits. Note that one
global-to-local swap (of all global qubits) requires the same amount of communi-
cation as one global gate. Averaged over the different global qubits, executing a
dense global gate takes approximately 1/2 of the time required to swap all global
qubits with local qubits, because applying a dense gate to low-order global qubits
is faster due to the increased locality of the communication, see Ref. [52]. Note that
the dashed lines are for worst case instances (only dense random gates on global
qubits) and solid lines are for median hard instances, which we only consider in
the two lower panels.

Qubit mapping

Last, the bit-location of each qubit is optimized in order to reduce the number of
clusters experiencing the performance decrease resulting from the set-associativity
of the last-level cache. Since this performance decrease only occurs if the gate
is applied to high-order bit-locations, this can be achieved by remapping. The
following heuristic allowed for a 2x decrease in time-to-solution:

Assign the qubit to bit-location 0 such that the number of clusters accessing
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Number
of Qubits

Number
of Gates

Number of clusters

kmax = 3 kmax = 4 kmax = 5

30 369 82 46 36

36 447 98 53 41

42 528 111 58 46

45 569 111 73 51

Table 5.1: Re-scheduling of gates for depth-25 quantum supremacy circuits into
clusters (using 30 local qubits). Clusters are built to contain k ≤ kmax qubits using
a heuristic which tries to maximize the number of gates merged into one cluster.
Clearly more than kmax individual gates can be combined into one single cluster
on average. These optimizations take less than 3 seconds using Python and can
be reused for all instance of the same size.

bit-location 0 is maximal. From now on, ignore all clusters which act on this qubit
and assign bit-locations 1, 2, and 3 in the same manner. Bit locations 4, 5, 6,
and 7 are assigned the same way, except that after each step, only clusters acting
on two of these four bit-locations are ignored when assigning the next higher bit-
location. For non-random circuits, it would pay off to perform a few local swaps
between some bit-locations over the course of the algorithm, in order to maximize
the number of clusters acting on low-order qubits.

5.2 Implementation and results
All optimizations mentioned in the previous sections were implemented in C++,
except for the code generator for the k-qubit kernels and the circuit scheduler/qubit
mapper, which were both implemented in Python.

5.2.1 Cori II
We performed simulations of quantum supremacy circuits featuring 30, 36, 42, and
45 qubits on the Cori II system at the Lawrence Berkeley National Laboratory
(LBNL). Cori II consists of 9,304 single-socket compute nodes, each containing
one 68-core Intel® Xeon Phi™ Processor 7250 (KNL) at 1.40GHz. The nodes are
interconnected by a Cray Aries high speed “dragonfly” [86] topology interconnect
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Figure 5.6: Decrease in performance when applying k-qubit gate kernels to qubits
with large indices (high-order qubits) as opposed to low indices (low-order qubits).
These experiments were run on all 68 cores of a Cori II KNL node. As mentioned in
Sec. 5.1.3, this performance drop occurs when 2k is larger than the set-associativity
of the last-level cache. While the L2-cache is 16-way set-associative, it is shared
between 2 cores.

and offer a combined theoretical peak performance of 29.1 PFLOPS and 1 PB of
aggregate memory.

Node-level performance

These experiments were run on a single 68-core Intel® Xeon Phi™ Processor 7250
(KNL) node of the Cori II supercomputing system in the quad/cache setting. For
k ∈ {1, 2, 3}-qubit gate kernels, four threads per core were used, as this resulted
in the best performance. For k = 4 and k = 5, the best performance was achieved
when using two and one thread per core, respectively. As mentioned in Sec. 5.1.3,
the set-associativity of caches plays a crucial role in the performance of these k-
qubit gate kernels. In particular, we find the theoretical predictions from Sec. 5.1.3
to agree perfectly with observations, see Fig. 5.6. The strong scaling behavior of
executing one k-qubit gate kernel on a state vector of 28 qubits can be seen in
Fig. 5.7.

Multi-node performance

The strong scaling of our simulator for a 36- and 42-qubit quantum circuit run-
ning on {16, 32, 64} and {1024, 2048, 4096} KNL nodes of Cori II, respectively, is
depicted in Fig. 5.8. Following these scaling experiments, we ran a 45-qubit quan-
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Figure 5.8: Strong scaling of our simulator running a 36- and 42-qubit quantum
supremacy circuit on {16, 32, 64} and {1024, 2048, 4096} nodes of Cori II, respec-
tively.

tum supremacy circuit using 8, 192 KNL nodes and a total of 0.5PB of memory.
To our knowledge, this is the largest quantum circuit simulation ever carried out.
Averaged over the entire simulation time (i.e., including communication time), this
simulation achieved 0.428 PFLOPS. There are two reasons for this drop in perfor-
mance. First, the time spent in communication and synchronization is 78%, and
overlaying computation and communication would not improve this behavior due
to the low k-qubit gate times (less than 1 second).
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#Qubits #Gates #Nodes Time [s] Comm. Speedup

6× 5 369 1 9.58 0% 14.8x

6× 6 447 64 28.92 42.9% 12.8x

7× 6 528 4096 79.53 71.8% 12.4x

9× 5 569 8192 552.61 78.0% N/A

Table 5.2: Results for all simulations carried out on Cori II. Circuit simulation time
and speedup are given with respect to the depth-25 quantum supremacy circuit
simulations performed in [52]. The column Comm. gives the percentage of circuit
simulation time spent in communication and synchronization.

Second, the performance of our kernels suffers in the regime where only few
k-qubit gates are applied before a global-to-local swap needs to be performed. This
is due to the fact that blocking for MCDRAM requires a sequence of several gates
acting on qubits below bit-location 29. While our mapping procedure aims to max-
imize this number, the total number of gates being applied is not large enough.
Yet, this is mainly due to the artificial construction of random circuits and does not
occur in actual quantum algorithms, where interactions remain local over longer
periods of time. As our 4-qubit gate kernel achieves 1/2 of the MCDRAM band-
width which corresponds to roughly 2x the bandwidth of DRAM (see Fig. 5.2b),
we expect a 2x drop in performance if memory requirements exceed the MCDRAM
size of 16GB. Averaging the performance of our k-qubit kernels in Fig. 5.6 and in-
cluding this 2x reduction yields approximately 250 GFLOPS per node. In total,
we thus expect a performance of 22% × 8, 192 × 250 GFLOPS ≈ 0.45 PFLOPS,
which agrees with the measurement results given that we also apply a few 3- and
2-qubit gate kernels for left-over gates.

For a summary of all runs carried out on Cori II, see Table 5.2. Our imple-
mentation for, e.g., 42 qubits behaves as expected from Fig. 5.5a: For a depth-25
circuit, the communication scheme used in [52] requires about 50 global gates,
while our simulator performs 2 global-to-local swaps (of all global qubits). In-
cluding the fact that one such global-to-local swap requires the same amount of
communication and that, averaged over all global qubits, a global gate is 2x faster
than if it is applied to the highest-order global qubit due to the network bisection
bandwidth (see [52]), yields a reduction in communication of

50x
2 · 2 = 12.5x ,
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Figure 5.9: Performance decrease when k-qubit gate kernels are applied to high-
order qubits instead of low-order ones on a two-socket Edison node. The findings
again correspond to the set-associativity of the caches, which is 23 = 8 in this
case. For k ≤ 3, there is only a negligible drop in performance, since all 2k entries
are mapped to different locations in the cache and the next 2k-sizes matrix-vector
multiplication can access the next 2k values directly from cache, see Sec. 5.1.3

and since we achieve a similar reduction in time-to-solution for the circuit simula-
tion on each node, this is also the expected overall speedup.

5.2.2 Edison
In order to be able to compare our results directly to [52], we also ran 30- and
36-qubit quantum supremacy circuits on the Edison system, also at LBNL. We
used up to 64 sockets, each featuring a 12-core Intel® Xeon® Processor E5-2695
v2 at 2.4GHz. The 5, 586 2-socket Edison nodes are interconnected by a Cray
Aries “dragonfly” [86] topology interconnect and the theoretical peak performance
of the entire system is 2.57 PFLOPS.

Node-level performance

The performance reduction from applying gates to high-order qubits due to the
8-way set-associativity of the L1- and L2-caches in Intel® Ivy Bridge™ processors
can be seen in Fig. 5.9. These experiments were run on an entire two-socket node
on all 24 cores with one OpenMP thread per core and using AVX vectorization.

The strong scaling of these k-qubit kernels with respect to the number of cores
is depicted in Fig. 5.10. While the 5-qubit gate kernel scales best to the full node,
the performance drop when applying it to high-order qubits is much greater than
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Figure 5.10: Strong scaling of the k-qubit kernels using up to 24 cores of a two-
socket Edison node, which features one 12-core Intel® Ivy Bridge™ processor per
socket. Up to and including k = 4, the kernels are memory bandwidth limited.
This in combination with Fig. 5.9 suggests that k = 4 is the best kernel size to use
on this system (with 1 MPI process per socket).

it is for 4-qubit gates. In addition, the 4-qubit gate kernel scales nearly perfectly
to all 12 cores of a single socket, which suggests to use 2 MPI processes per node
in the multi-node setting.

Running a single-socket simulation of a 30-qubit quantum supremacy circuit
yields an improvement in time-to-solution by 3x.

Multi-node performance

In order to compare the present work directly to the state-of-the-art simulator
in [52], we performed a simulation of a 36-qubit quantum supremacy circuit using
identical hardware: 64 sockets of the Edison supercomputer. We calculated the
entropy of a depth-25 quantum supremacy circuit in 99 seconds, of which 90.9
seconds were spent in actual simulation and the remaining 8.1 seconds were used
to calculate the entropy, which requires a final reduction. This constitutes an im-
provement in time-to-solution of over 4x and indicates that the obtained speedups
were not merely a consequence of a new generation of hardware.

The kernels perform at an average of 47% theoretical peak, or 218 GFLOPS
on every node during the execution of a 36-qubit quantum supremacy circuit.
When including communication time, the entire simulation achieved 30% of the
theoretical peak performance of 64 Edison sockets, which is 4.4 TFLOPS.
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5.3 Conclusion
We demonstrated simulations of up to 45 qubits using up to 8, 192 nodes. With
the same amount of compute resources, the simulation of 46 qubits is feasible when
using single-precision floating point numbers to represent the complex amplitudes.
The presented optimizations are general and our code generator improves perfor-
mance portability across a wide range of processors. Extending the range of the
code generator to the domain of GPUs is an ongoing project. Additional opti-
mizations on the quantum circuit description reduced the required communication
by an order of magnitude. As a result, the simulation of a 49-qubit quantum
supremacy circuit would require only two global-to-local swap operations. While
the memory requirements to simulate such a large circuit are beyond what is pos-
sible today, the low amount of communication would allow to use, e.g., solid-state
drives.

Our simulation approach depends linearly on the number of gates being simu-
lated. For quantum supremacy circuits of low depth, however, different simulation
methods are capable of handling more qubits [29, 31], at least if the two-qubit gate
is chosen to be sparse.

Subsequent updates to the specifications of quantum supremacy circuits [52]
have increased both circuit depth and the density of two-qubit gates. As a result,
these alternative approaches loose their advantage. Our approach is only affected
mildly by these changes as it can no longer perform the global CZ-gate optimization.
Our simulator thus requires up to one additional global-to-local swap for circuits
of equal depth. The number of such swaps scales linearly with the circuit depth
and, as a result, we expect the run time to increase by a factor < 4x for a depth-40
circuit with dense two-qubit gates.
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Chapter 6

Emulation of quantum circuits

In contrast to random circuits, the additional structure that is present in quantum
algorithms can be exploited in order to speed up the simulation. In this chapter,
which is a slightly modified version of Ref. [5], we thus introduce the concept of
a quantum computer emulator. Emulation is an extension of simulation to the
setting in which a comprehensive compilation framework for quantum programs is
available. More specifically, an emulator may employ direct classical emulation for
quantum subroutines at the level of their mathematical description rather than
compiling them into elementary gates before carrying out the simulation. As a
consequence, the run time of quantum algorithms run on classical hardware is
drastically reduced.

We present various examples of such optimizations, accompanied by run time
measurements which show the merits of quantum computer emulation. Further-
more, in order to arrive at heuristics for cases where multiple classical shortcuts
exist, an analysis of crossover points is carried out. Finally, to demonstrate that
our simulator, against which we achieve a speedup using our new quantum emu-
lator, is state-of-the-art, we benchmark it against other existing simulators on a
subset of quantum circuits.

While emulation is a widely recognized tool commonly used in many areas of
computer science, we are not aware of previous work on emulation of quantum
programs. A fitting example in the classical domain is the Structural Simulation
Toolkit (SST) [87], which enables the user to run a program on various hardware
models. An efficient emulation process is achieved by running the computations
at different levels of accuracy and detail, similar to our quantum circuit emulator.
Another example is the Intel® Software Development Emulator tool [88], which
allows emulation of upcoming or experimental hardware features, such as new
SIMD or transactional memory extensions, before they become available.
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6.1 Quantum computer emulation
Simulation and emulation of quantum computers are inherently different concepts.
As a simulation of a quantum computer we understand the exact calculation of the
effects of every single gate. This directly mimics the operations that a quantum
computer performs and the simulation can also include effects of classical and
quantum noise as well as calibration or control errors.

Quantum computer emulation, on the other hand, is only required to return
the same result as a perfect and noiseless quantum computation would. Instead of
compiling an algorithm down to elementary gates for specific quantum hardware,
certain high-level subroutines can be replaced by calls to faster classical shortcuts
to be executed by the emulator. Depending on the level of abstraction at which the
emulation is carried out, there is a large potential for optimizations and substantial
speedup [1].

To illustrate this point, consider performing classical functions on a quantum
computer which is needed in order to apply classical functionality to a superpo-
sition of inputs. The most famous application of this is Shor’s algorithm [13]. In
order to satisfy the reversibility constraint of quantum mechanics, these functions
need to be implemented reversibly, which leads to a large overhead in the number
of quantum gates compared to a non-reversible classical computation. This is due
to the fact that temporary variables need to be reset by employing a so called
uncomputation step [21].

A straight-forward approach to translating a classical function to a reversible
quantum circuit is to replace all NAND gates by the reversible Toffoli gate (also
called CCNOT), which requires an additional bit for each NAND to store the result.
After completion of the circuit, the result can be copied using CNOT gates prior
to clearing all (temporary) work bits by running the entire circuit in reverse [21].
This can also be run on a quantum computer using a quantum version of the Tof-
foli gate (which can be composed from single-qubit gates and CNOT gates). This
transformation causes a doubling of gates and an overhead of one additional qubit
for each original NAND gate. There are more sophisticated approaches [89] which
reduce the number of work qubits by uncomputing intermediate results early. Yet,
those intermediate results have to be recomputed1 during the uncomputation step
which follows after completion of the circuit, resulting in an increase of gate oper-
ations. This is bad news for a simulator, since both approaches cause a significant
increase in runtime. Hence, the simulation of a classical function on a quantum
computer is a very costly endeavor.

An emulator, on the other hand, does not need to compile the classical function
down to reversible gates, nor does it have to simulate the additional work qubits

1As the uncomputation of an uncomputate step is recomputing the original result.
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that may be needed during function execution. Instead, the emulator can just
evaluate the classical function directly for each of its arguments, thereby saving
huge amounts of computational power. In the next section, we will discuss four
examples where emulation may gain a substantial performance advantage over
simulation.

6.1.1 Arithmetic operations and mathematical functions
The most straight-forward example is the execution of arithmetic operations and
mathematical functions on a quantum computer. Instead of simulating the vast
number of Toffoli gates required to implement, e.g., a multiplication or a trigono-
metric function reversibly, one can perform the classical multiplication or trigono-
metric function directly for each computational basis state using the hardware
implementation available on classical computers.

We consider the multiplication and division of two numbers a and b into a new
register c as examples. Specifically, we implement the mapping for multiplication

(a, b, c = 0) = (a1, ..., aN , b1, ..., bN , 0, ..., 0)
7→ (a, b, ab) ,

and for division (with remainder r),

(a, b, c = 0) = (a1, ..., aN , b1, ..., bN , 0, ..., 0)
7→ (r, b, a/b) ,

where the N -qubit input registers a and b may be in an arbitrary superposition,
allowing this computation to be carried out on all (exponentially many) possible
input states in parallel on a quantum computer.

On a simulator, the 3N -qubit wavefunction is stored as a vector of 23N complex
numbers with indices i ∈ {0, 1}3N , which can be written as i = a1, ..., aN , b1, ..., bN ,-
0, ..., 0 in binary notation, where xk denotes the k-th bit of x. The action of
a multiplication corresponds to a permutation of the state vector, mapping the
complex value at location i to the index j = a1, ..., aN , b1, ..., bN , (ab)1, ..., (ab)N . In
order to achieve this transformation, a simulator would apply the corresponding
Toffoli network. An emulator, on the other hand, can simply perform the described
mapping directly. The simulation and emulation of a division can be carried out
analogously.

To benchmark the simulation, we implement these operations using the adder of
Ref. [44] combined with a repeated-addition-and-shift and a repeated-subtraction-
and-shift approach for multiplication and division, respectively. The runtimes of
emulation and simulation can be found in section 6.2.
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6.1.2 Quantum Fourier transform
The quantum Fourier transform (QFT) [41] is a common quantum subroutine
that is used in many quantum algorithms due to its ability to detect periods and
patterns. At a formal mathematical level, the QFT performs a Fourier transform
on the state vector α of n qubits, where each entry αl (0 ≤ l < 2n) gets transformed
as

αl 7→
1

2n/2
2n−1∑
k=0

αk exp
(

2πi kl2n

)
. (6.1)

On a quantum computer, the QFT can be implemented by a sequence of O(n2)
Hadamard and conditional phase shift gates. Simulating this circuit is expensive
as each gates acts on the state vector of size 2n. An emulator, on the other hand,
can just directly perform a Fast Fourier Transform (FFT) on the state vector using
optimized classical libraries.

6.1.3 Quantum phase estimation
Quantum phase estimation (QPE) [41] is another subroutine that is used in many
quantum algorithms, such as Shor’s algorithm for factoring [13]. Given a circuit
of a unitary operator U acting on n qubits and an eigenvector ~u stored in an n-
qubit register, the QPE algorithm calculates the corresponding eigenvalue eiθ.2 In
a wave function simulator picture, the operator U is described by a unitary 2n×2n
matrix. While there are many versions of the QPE algorithm, they all are based
on repeatedly applying the controlled operator U .3 Specifically, the operators

U1, U2, U4, U8, . . . , U2b−1 (6.2)

need to be applied in order to arrive at a b-bit estimate of the eigenvalue angle
θ. In addition, at least one work qubit and an inverse QFT are required when
implementing the QPE as done in Ref. [90]. In the following, we assume that U is
implemented on a quantum computer through a sequence of G gates, i.e.,

U =
G∏
i=1

Ui ,

where Ui is a single or two-qubit gate.
A simulator implements Ui through multiplications of sparse 2n × 2n matrices

with the wave function. Applying powers of U corresponds to repeatedly applying
2All eigenvalues of a unitary matrix can be written in the form of eiθ. QPE calculates the

angle θ.
3Since the cost of simulating the application of the controlled version of U is essentially the

same as simulating U itself, we ignore this detail in the further analysis.
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the sequence of G gates which each has complexity O(2n). From equation 6.2,
it follows that we need to apply U exactly 2b − 1 times. Hence, the runtime
complexity of QPE without accounting for the inverse QFT is O(G2n+b) for a
quantum computer simulator using an algorithm with the minimal number of
one ancilla (temporary work) qubit as done in [90]. Coherent phase estimation
algorithms [41] that use b ancillas to optimize runtime will incur an additional
factor O(2b) in simulation effort.

An emulator can take a shortcut by first building a (dense) matrix representa-
tion of the unitary operator U and then using repeated squaring to calculate U2i

iteratively for i = 0, 1, ..., b − 1. Building the matrix representation of U requires
O(G22n) effort. Using standard matrix-matrix multiplication, repeated squaring
can be performed in time O(23nb). Using Strassen’s algorithm [91], the complexity
can be reduced to O(22.8nb). Since G is typically polynomial in n, G2n is sub-
dominant. There is an advantage in the asymptotic scaling when switching from
quantum simulation to emulation if b ≥ 2n, or b > (log2 7−1)n ≈ 1.8n when using
Strassen.

Alternatively, a dense matrix eigensolver can be employed to directly classically
compute the eigenvalues of U with effort O(G22n + 23n) for approaches based on
Hessenberg reduction [92], which again will have a scaling advantage compared to
simulation for b > 2n. Given the cost of an eigendecomposition, this is advanta-
geous especially when performed for a coherent QPE, which requires not just one,
but b ancilla qubits, making the effort of simulation O(G2n+2b). In this case we
have a scaling advantage for b > n.

Which of these approaches is more efficient depends on the required precision
and the size of the matrix. An analysis of this trade-off and the respective timing
results are presented in section 6.2.

6.1.4 Measurements
Finally, emulators have an advantage over actual quantum computers when it
comes to estimating the expectation values of measurements. On a quantum com-
puter, a measurement of n qubits only yields n bits of information, returning one
of the states i as the result with probability given by |αi|2. Our classical simula-
tions are O(2n) times more expensive than running the algorithm on a quantum
computer, as we have to operate on the exponentially large vector representation.
However, in return, we get the complete distribution of measurements and not just
a single measurement sample.

While a quantum computer will often have to repeat an algorithm many times
to get a (statistical) measurement with high enough accuracy, the classical emu-
lation of such repeatedly executed measurements can easily be done in one step
and the expectation value can immediately be evaluated. This removes the need

91



6.2 Performance results

for sampling and hence greatly reduces the overall simulation time.
As the time savings of emulation compared to simulation are just the number

of repetitions of the circuit, no benchmarks are performed.

6.2 Performance results

6.2.1 Experimental setup

We compare the performance of quantum simulation and emulation on several
systems.

For the distributed QFT and phase estimation we use the Stampede [93] system
at the Texas Advanced Computing Center (TACC)/Univ. of Texas, USA (#10
in the current TOP500 list). It consists of 6400 compute nodes, each of which
is equipped with two sockets of Xeon E5-2680 connected via QPI and 32GB of
DDR4 memory per node (16GB per socket), as well as one Intel® Xeon Phi™
SE10P co-processor. Each socket has 8 cores, with hyperthreading disabled. The
nodes are connected via a Mellanox FDR 56 Gb/s InfiniBand interconnect. We
use OpenMP 4.0 [94] to parallelize the computation among threads. We have used
the Intel® Compiler v15.0.2 with Intel® Math Kernel Library (MKL) v11.2.2, and
Intel® MPI Library v5.0.

Additional single-node and single-core benchmarks were performed on an Intel®
Core™i7-5600U processor, unless specified otherwise.

6.2.2 Arithmetic operations and mathematical functions

All experiments for arithmetic operations were performed on a single core of an
Intel® Xeon E5-2697v2 processor due to the tremendous overhead in time when
performing calculations with numbers consisting of more qubits than one node
can handle. Such cases can only be dealt with by emulating the classical function,
which effectively performs one global permutation of the (distributed) state vec-
tor. Also, using multiple cores is not very profitable, due to the fact that these
operations are heavily memory-bandwidth bound.

Figure 6.1 shows performance results comparing the runtimes of simulating and
emulating a multiplication of two m-bit integers a and b into a third register c.
The advantage of the emulator, performing more than one hundred times faster,
can clearly be seen.

A much larger advantage can be seen for division, which requires additional
work qubits to perform the calculation. This incurs an exponential cost on a
simulator. In Figure 6.2, the runtime advantage for a division can be seen. It can

92



Emulation of quantum circuits

1e-06
1e-05
0.0001
0.001
0.01
0.1
1
10
100
1000
10000

2 3 4 5 6 7 8 9 10

T
im

e
pe

r
m
ul
tip

lic
at
io
n
[s
]

Number of bits m per number

100
200
300
400
500

2 3 4 5 6 7 8 9

Speedup

Simulation
Emulation

Figure 6.1: Timings for emulation and simulation of a multiplication of two m-
qubit numbers into a third register consisting of m qubits (requiring a total of
n = 3m qubits). There is a clear speedup when emulating this operation instead
of simulating it at gate-level. The drop in speedup when going from 5- to 6-bit
numbers is due to the data exceeding the limits of the L3-Cache (4 MBytes), since
23·6 [entries] · 16 [bytes/entry] = 4.2 MBytes.

be observed that the overhead grows with the number of qubits used to represent
the integers, as the number of required work-qubits grows as well.

Even more dramatic effects can be expected when dealing with complex math-
ematical operations such as trigonometric functions, where some kind of series
expansion or iterative procedure with many intermediate results is used. For each
of these temporary values, additional m qubits are required, causing an exponen-
tial overhead of the simulation in both space and time. Emulating such classical
reversible functions not only pays off but makes it feasible on today’s classical su-
percomputers, which otherwise would not be able to handle the enormous memory
requirements.

6.2.3 Quantum Fourier transform

To benchmark the quantum Fourier transform, we use parallel implementations of
both the simulator and the emulator, storing the wave function for 28 qubits locally
and using 2N−28 nodes for N(≥ 28) qubits, which corresponds to weak scaling
(keeping the problem size per node constant). In Figure 6.3 one can clearly see that
simulating the QFT circuit is worse than directly performing a one-dimensional
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Figure 6.2: Timings for emulation and simulation of an integer division of two
m-qubit numbers into a third register consisting of m qubits (requiring a total
of n = 3m qubits). The speedup is far greater than for multiplication, which is
due to the extra work qubits required to do the test for less/equal by checking for
overflow. In addition, the numbers used for the division are limited to 7 bits due
to the larger memory requirements caused by the extra work qubits.

distributed classical fast Fourier transform. For the latter we used the Intel®
Cluster FFT from the Intel® MKL library, which we found to be faster than
FFTW [57].

We observe that quantum emulation is 15× faster than quantum simulation on
a single node. As we increase both the system size and the number of nodes, we
observe a degraded weak scaling behavior. This is expected due to the increasing
amount of communication. Despite this performance degradation, emulation still
achieves a substantial 6− 15× speedup over simulation.

6.2.4 Quantum phase estimation

We have used the Intel® MKL implementations of complex matrix-matrix multi-
plication (zgemm) and a general eigensolver (zgeev) to perform repeated squaring
and to determine the eigensystem, respectively. In typical applications, one can
use the high-order (distributed) qubits as control qubits, enabling to execute the
unitary operators on low-order (local) qubits and to avoid using the ScalaPACK
implementation of zgeev, which scales very poorly with the number of nodes.
Therefore, we focus on single-node performance for the QPE timings. Table 6.1
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Figure 6.3: Execution times for emulation and simulation of a quantum Fourier
transform of N -qubits. Both emulation and simulation are run on 2N−28 nodes
in order to keep the problem size per node constant. The emulator shows a clear
advantage even when executing the QFT on a large number of qubits.

# qubits n acted on by U 8 9 10 11 12 13 14
Number of gates G 29 33 37 41 45 49 53

Tapply U with simulator [s] 1.44 · 10−4 1.60 · 10−4 1.80 · 10−4 2.11 · 10−4 2.44 · 10−4 3.46 · 10−4 4.92 · 10−4

Tconstruction of dense U [s] 7.60 · 10−4 3.46 · 10−3 1.55 · 10−2 6.88 · 10−2 3.02 · 10−1 1.32 5.69
Tzgemm of denseU [s] 8.39 · 10−4 6.71 · 10−3 5.37 · 10−2 4.29 · 10−1 3.44 2.75 · 101 2.20 · 102

Tzgeev of dense U [s] 9.60 · 10−2 5.27 · 10−1 1.70 6.72 3.22 · 101 1.80 · 102 9.01 · 102

Crossover [# bits of precision]

Repeated Squaring 6 9 12 15 18 21 24
Eigendecomposition 10 12 14 15 18 19 21

Table 6.1: Timings of the various steps involved when simulating or emulating
a quantum phase estimation. Our example is for the time evolution of a one-
dimensional transverse field Ising model. The lower panel shows the crossover
precision in bits at which emulation using repeated squaring or eigendecomposition
becomes advantageous over direct simulation.

depicts the results for applying QPE to a unitary operator U acting on different
numbers of qubits n ∈ {8, ..., 14}. For each n, we determine the number of bits of
precision corresponding to the crossover point at which emulation becomes faster
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Figure 6.4: Comparison between qHiPSTER and our simulator for applying a
quantum Fourier transform. The performance advantage of our simulator grows
with the required communication, allowing simulations of larger systems.

than quantum simulation.

6.2.5 Comparison against other simulators

In order to show that the obtained speedups result from emulation and do not orig-
inate from a suboptimal implementation of our simulator, we provide benchmarks
comparing the performance of our simulator to other state-of-the-art simulators,
namely qHiPSTER [84] and LIQUi |〉 [95].

The simulator benchmarks consist of two operations: Applying a QFT and an
entangling operation, where the latter applies a Hadamard gate to the first qubit,
followed by a series of CNOTs acting on all other qubits, all conditioned on the
first qubit.

Since only qHiPSTER provides a distributed multi-node implementation, the
parallel QFT comparison is exclusively carried out between qHiPSTER and our
simulator. We show the weak-scaling behavior in Figure 6.4, where N varies
between 28 and 36 and the number of sockets is chosen to keep the memory per
node constant (i.e. using from 1 to 256 nodes). Note that our parallel simulator
shows a growing advantage as the requirement for communication increases. This
stems from the fact that our simulator takes advantage of the structure of gate
matrices, allowing, e.g., to reduce the communication for diagonal gates such as
the conditional phase shift.
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Figure 6.5: Comparison of our simulator to qHiPSTER and LIQUi |〉 for applying
a quantum Fourier transform on a single node. Our simulator clearly shows the
best performance.
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Figure 6.6: Comparison of our simulator to qHiPSTER and LIQUi |〉 for apply-
ing an entangling operation on a single node. Our simulator achieves significant
speedups of 2× and 6×, respectively.

The single node performance is depicted in Figure 6.5 for a QFT, and in Fig-
ure 6.6 for the entangling operation, which provides further proof of our simulator
outperforming the other two simulators. As a consequence, there will be an even
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larger advantage of our emulator against those simulators.

6.3 Conclusion
The development of quantum algorithms that promise to solve important open
computational problems has caused quantum computing to be viewed as a viable
long-term candidate for post-exascale computing. Due to the current lack of uni-
versal quantum computers, the testing, debugging, and development of algorithms
is done on classical systems, employing high-performance simulators. For the case
of noiseless, perfect simulations, we propose to emulate the algorithms instead,
making use of the optimizations presented in this chapter. Yet, this emulation is
only possible if the quantum program is available in a high-level language, where
the higher levels of abstractions are easy to identify. This is the case in the compi-
lation framework described in [1], where emulators have been suggested at various
levels, and can also be integrated into LIQUi |〉 [95], Quipper [37], or any other
quantum programming language.

Our results show that quantum program emulation allows to test and debug
large quantum circuits at a cost that is substantially reduced when compared to
previous approaches. The advantage is already substantial for operations such
as the quantum Fourier transforms, and grows to many orders of magnitude for
arithmetic operations, since emulation avoids simulating ancilla qubits (needed for
reversible arithmetic) which would incur an additional cost that is exponential in
the number of such ancilla qubits. Emulation will thus be a crucial tool for testing,
debugging and evaluating the performance of quantum algorithms involving arith-
metic operations, which includes quantum-accelerated Monte Carlo sampling [96]
and machine learning applications [97, 98, 99].

Subsequent work has extended the emulation capabilities of our emulator fur-
ther by adding support for modular arithmetic. As a result, Shor’s algorithm for
factoring N = 4, 028, 033 = 2, 003 · 2, 011 can be run on a regular laptop in less
than 3 minutes [9]. In contrast, full state vector simulation would need to keep
track of at least 2n+ 1 = 45 qubits [100], where n = dlog2(N)e. Full simulation of
the same instance would thus require at least 0.5 petabytes of memory. As such,
this is an excellent demonstration of how beneficial emulators are in practice.
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Introduction to Part III

During the compilation process, simulation results and theoretical bounds may
be employed in order to make decisions regarding the parameters of available de-
compositions. Developing new efficient decompositions into lower-level gates for
specific operations, however, is a nontrivial task. While design automation [8, 11],
may be sufficient to perform a first feasibility analysis of algorithms involving classi-
cal oracles, this usually results in circuits with much greater resource requirements
than designs by humans [8]. Therefore, to reduce the resource requirements of
quantum algorithms and, thereby, move crossover points toward smaller system
sizes, manual optimization of circuits is still necessary. This is analogous to classi-
cal high-performance computing, where system-specific optimizations are essential
to utilize most of the available computational resources.

Many quantum algorithms evaluate classical functions on a superposition of in-
puts. Examples include Shor’s algorithm [13] and various algorithms for simulating
physical systems [45, 71, 96] and for solving linear systems of equations [46, 101].
It is well-known that the overhead resulting from transforming a classical compu-
tation to a reversible computation is polynomial in the number of basic operations
in both space and time [21]. While this conversion is thus efficiently possible,
the change in resource requirements greatly influences the problem sizes at which
a quantum algorithm outperforms its classical competition. It is thus crucial to
analyze the costs of such subroutines in order to determine practical applications
of the first large-scale quantum computers. In addition, such analyses allow to
identify performance bottlenecks.

This part contains two chapters. In chapter 7, which is a slightly modified
version of Ref. [6], we develop a new Toffoli based addition circuit which requires
no (clean) work qubits to perform the n-qubit mapping

|x〉 7→ |x+ c〉

for a classical constant c. Previous Toffoli based circuits achieving this mapping
required n clean work qubits, where n denotes the number of qubits in the quantum
register |x〉. The only implementation working without extra qubits was Draper’s
addition in Fourier space [35], which has the downside of requiring a quantum
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Fourier transform and its inverse; both of which feature rotations that need to be
rewritten in terms of a discrete gate set to allow for a fault-tolerant implementation.

To save these n work qubits without resorting to such rotation gates, our new
addition circuit makes use of dirty qubits, that is, it borrows qubits which are
already in use by the ongoing computation. Using our recursive construction it is
possible to achieve the above mapping in depth O(n) by borrowing a single dirty
qubit.

We then use the resulting addition circuit to implement Shor’s algorithm for
factoring an n-bit number. Since we require no clean work qubits and no rotations,
we are able to reduce the circuit depth by Θ(log ε−1) compared to the state of the
art, where ε ∈ O(n−3) denotes the accuracy of rotation synthesis, while keeping
the circuit width constant at 2n+ 2 qubits [102]. As an additional benefit, we are
able to fully test our Toffoli based modular multiplication circuit.

In chapter 8, which is a slightly modified version of Ref. [7], we analyze the
costs of mathematical functions that occur frequently in the quantum algorithm
literature. We use insights from classical high-performance computing in order
to optimize the resulting library for fixed-point arithmetic. Our main technical
innovation lies in a new resource-efficient approach to evaluate piece-wise smooth
functions to high accuracy on a quantum computer. In essence, we propose an
optimized circuit to combine a host of different low-degree polynomial approxima-
tions, each of which approximates the target function on a small subdomain. We
present and implement an algorithm to determine these subdomains and the cor-
responding polynomials, and report resource estimates for various functions that
occur often in the quantum algorithm literature.
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Chapter 7

Factoring using 2n + 2 qubits with
Toffoli based modular
multiplication

In this chapter, we introduce a new type of addition circuit. In contrast to previous
implementations achieving the mapping |x〉 7→ |x+ c〉 for a classical constant c,
our circuit uses no quantum Fourier transforms and only one work qubit which
may be in an arbitrary state.

We then use our addition circuit to construct the modular exponentiation re-
quired in Shor’s algorithm [13] to factor the n-bit number N . The quantum part
of Shor’s algorithm consists of the following steps: (1) Initialize |x〉 to the uniform
superposition by applying a Hadamard gate to each of the 2n qubits in |x〉. (2)
Perform modular exponentiation of the number a which was chosen uniformly at
random from [2, ..., N − 1] with input |x〉, i.e., perform

|x〉 |0〉 7→ |x〉 |ax modN〉 .

(3) Apply the inverse quantum Fourier transform to |x〉. (4) Measure |x〉 and try to
infer the period of f(x) := ax modN and then the factors of N . (5) If unsuccessful
(for details, see Refs. [13, 41]), the entire procedure is repeated, choosing a again
uniformly at random from [2, ..., N − 1].

Implementing the modular exponentiation above using 2n conditional modular
multiplications [90] results in the circuit depicted in Fig. 7.1.

There are many possible implementations of Shor’s algorithm, all of which
offer deeper insight into space/time trade-offs by, e.g., using different ways of
implementing the circuit for adding a known classical constant c to a quantum
register |a〉, see Table 7.1.

The implementation given in Ref. [102] features the lowest known number of
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Figure 7.1: Circuit for Shor’s algorithm as in [90], using the single-qubit semi-
classical quantum Fourier transform from [103]. In total, 2n modular multiplica-
tions by ãi = a2i modN are required (denoted by ãi-gates in the circuit). The
phase-shift gates Rk are given by

(
1 0
0 eiθk

)
with θk = −π∑k−1

j=0 2k−jmi, where the
sum runs over all previous measurements j and mj ∈ {0, 1} denotes the respective
measurement result (m0 denotes the least significant bit of the final answer and is
obtained in the first measurement).

Cuccaro [44] Takahashi [69] Draper [35] Our adder

Size Θ(n) Θ(n) Θ(n2) Θ(n log n)
Depth Θ(n) Θ(n) Θ(n) Θ(n)
Ancillas n+1 (clean) n (clean) 0 [1, n] dirty

Table 7.1: Costs associated with various implementations of addition |a〉 7→ |a+ c〉
of a value a by a classical constant c. Our adder uses 1 dirty ancilla to achieve a
depth in Θ(n). More dirty qubits (up to n) allow to reduce the depth by constant
factors.

qubits and uses Draper’s addition in Fourier space [35], allowing factoring to be
achieved using only 2n+2 qubits at the cost of a circuit size in Θ(n3 log n). Further-
more, the QFT circuit features many (controlled) rotations, which in turn imply a
large T-gate count when quantum error-correction (QEC) is required. Implemen-
tations using classically-inspired adders as in Ref. [44], on the other hand, yield
circuits with as few as 3n +O(1) qubits and O(n3) size. Such classical reversible
circuits have several advantages over Fourier-based arithmetic. In particular,

1. they can be efficiently simulated on a classical computer, i.e., the logical
circuits can be tested on a classical computer,

2. they do not suffer from the overhead of single-qubit rotation synthesis [27,
73, 104] when employing QEC.

We construct our O(n3 log n)-sized implementation of Shor’s algorithm from
our Toffoli based in-place constant-adder, which adds a classically known n-bit
constant c to the n-qubit quantum register |x〉, i.e., which implements |x〉 7→ |x+ c〉
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where x is an arbitrary n-bit input and x+ c is an n-bit output (the final carry is
ignored).

Our main technical innovation is to obtain space savings by making use of
dirty ancilla qubits which the circuit is allowed to borrow during its execution. By
a dirty ancilla we mean—in contrast to a clean ancilla which is a qubit that is
initialized in a known quantum state—a qubit which can be in an arbitrary state
and, in particular, may be entangled with other qubits. In our circuits, whenever
such dirty ancilla qubits are borrowed and used as scratch space, they are then
returned in exactly the same state as they were in when they were borrowed.

Our addition circuit requires O(n log n) Toffoli gates and has an overall depth
of O(n). Following Beauregard [90], we construct a modular multiplication circuit
using this adder and report the gate counts of Shor’s algorithm in order to com-
pare our implementation to the one of Takahashi et al. [102], who used Fourier
addition [35] as a basic building block.

7.1 Toffoli based in-place addition
One possible way to construct an (inefficient) adder is to note that one can calculate
the final bit rn−1 of the result r = a + c using n − 1 borrowed dirty qubits g.
Takahashi et al. hardwired a classical ripple-carry adder to arrive at a similar
circuit, which they used to optimize the modular addition in Shor’s algorithm
[102]. We construct our CARRY circuit from scratch, which allows to save O(n)
NOT gates as follows.

Since there is no way of determining the state of the g-register without mea-
suring, one can only use toggling of qubits to propagate information, as done by
Barenco et al. for the multiply-controlled-NOT using just one borrowed dirty an-
cilla qubit [26]. We choose to encode the carry using such qubits, i.e., the toggling
of qubit gi, which we denote as gi = 1, indicates the presence of a carry from bit
i to bit i+ 1 when adding the constant c to the bits of a. Thus, gi must toggle if
(at least) one of the following statements is true:

ai = ci = 1, gi−1 = ai = 1, or gi−1 = ci = 1.

If ci = 1, one must toggle gi+1 if ai = 1, which can be achieved by placing a CNOT
gate with target gi+1 and control ai = 1. Furthermore, there may be a carry when
ai = 0 but gi−1 = 1. This is easily solved by inverting ai and placing a Toffoli gate
with target gi, conditioned on ai and gi−1. If, on the other hand, ci = 0, the only
way of generating a carry is for ai = gi−1 = 1, which can be solved with the Toffoli
gate from before.

Thus, in summary, one always places the Toffoli gate conditioned on gi−1 and
ai, with target gi and, if ci = 1, one first adds a CNOT and a NOT gate. This
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|a0〉

|g0〉

|a1〉

|g1〉
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|a0〉

|g̃0〉

|ã1〉

|g̃1〉

|gn−3〉

|an−2〉

|gn−2〉

|an−1〉

· · ·

· · ·

|g̃n−3〉· · ·

|ãn−2〉· · ·

|g̃n−2〉

|rn−1〉

Figure 7.2: Circuit computing the last bit of r = a + c using dirty qubits g. An
orange (dark) gate acting on a qubit with index i must be dropped if the i-th bit
of the constant c is 0. The entire sequence must be run again in reverse (without
the gates acting on an−1) in order to reset all qubits to their initial value except
for rn−1.

classical conditioning during circuit-generation time is indicated by colored gates
in Fig. 7.2. In order to apply the Toffoli gate conditioned on the toggling of gi−1,
one places it before the potential toggling, and then again afterwards such that if
both are executed, the two gates cancel. Finally, the borrowed dirty qubits and
the qubits of a need to be restored to their initial state (except for the highest
bit of a, which now holds the result). This is done by running the entire circuit
backwards, ignoring all gates acting on an−1.

One can easily save the qubit g0 in Fig. 7.2 by conditioning the Toffoli gate
acting on g1 directly on the value of a0 (instead of testing for toggling of g0). If
c0 = 0, the two Toffoli gates can be removed altogether since the CNOT acting
on g0 would not be present and the two Toffolis would cancel. If, on the other
hand, c0 = 1, the two Toffoli gates can be replaced by just one, conditioned on a0.
See Fig. 7.3 for the complete circuit computing the last bit of a when adding the
constant c = 11.

If one were to iteratively calculate the bits n − 2, ..., 1, 0, one would arrive at
an O(n2)-sized addition circuit using n− 1 borrowed dirty ancilla qubits. This is
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|a〉
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|a〉
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|(a+ c)n〉

c = 11≡

|a0〉
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|g1〉
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|g3〉
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Figure 7.3: Example circuit computing the final carry of r = a + 11 derived from
the construction depicted in Fig. 7.2. The binary representation of the constant c
is c = 11 = 10112, i.e., the orange gates in Fig. 7.2 acting on qubit index 2 have
been removed since c2 = 0. Furthermore, the optimization mentioned in the text
has been applied, allowing to remove g0 in Fig. 7.2.

the same size as the Fourier addition circuit [35], unless one uses an approximate
version of the quantum Fourier transform bringing the size down to O(n log n

ε
)

[105]. We improve our construction to arrive at a size in O(n log n) in the next
subsection.

7.1.1 Serial implementation
An O(n log n)-sized addition circuit can be achieved by applying a divide-and-
conquer scheme to the straight-forward addition idea mentioned above (see Fig. 7.4),
together with the incrementer proposed in [106], which runs in O(n). Since we
have many dirty ancillae available in our recursive construction, the n-borrowed
qubits incrementer in [106] is sufficient: Using the ancilla-free adder by Takahashi
[69], which requires no incoming carry, and its reverse to perform subtraction, one
can perform the following sequence of operations to achieve an incrementer using
n borrowed ancilla qubits in an unknown initial state |g〉:

|x〉 |g〉 7→ |x− g〉 |g〉
7→ |x− g〉 |g′ − 1〉
7→ |x− g − g′ + 1〉 |g′ − 1〉
7→ |x+ 1〉 |g〉 ,

where g′ denotes the two’s-complement of g and g′−1 = g, the bit-wise complement
of g. A conditional incrementer can be constructed by either using two controlled
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Figure 7.4: Circuit for adding the constant a to the register x. xH and xL denote
the high- and low-bit part of x. The CARRY gate computes the carry of the
computation xL + aL into the qubit with initial state |0〉, borrowing the xH qubits
as dirty ancillae. This carry is then taken care of by an incrementer gate acting
on the high-bits of x. Applying this construction recursively yields an O(n log n)
addition circuit with just one ancilla qubit (the |0〉 qubit in this figure).
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Figure 7.5: The circuit of Fig. 7.4 for the case when the ancilla qubit is dirty
(unknown initial state |g〉, left unchanged by the computation).

adders as explained, or by applying an incrementer to a register containing both
the target and control qubits of the conditional incrementer, where the control
qubit is now the least significant bit [106]. Then, the incrementer can be run on
the larger register, followed by a final NOT gate acting on the control qubit (since
it will always be toggled by the incrementer). In the latter version, one can either
use one more dirty ancilla qubit for cases where nmod 2 = 0 or, alternatively,
split the incrementer into two smaller ones as done in Ref. [106]. We will use
the construction with an extra dirty qubit, since there are plenty of idle qubits
available in Shor’s algorithm.

In order to make the circuit depicted in Fig. 7.4 work with a borrowed dirty
qubit, the incrementer has to be run twice with a conditional inversion in between.
The resulting circuit can be seen in Fig. 7.5. At the lowest recursion level, only
1-bit additions are performed, which can be implemented as a NOT gate on xi if
ci = 1; all carries are accounted for earlier.
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7.1.2 Runtime analysis of the serial implementation

In the serial version, we always reuse the one borrowed dirty ancilla qubit to hold
the output of the CARRY gate, which is implemented as shown in Fig. 7.3. The
CARRY gate has a Toffoli count of Tcarry(n) = 4n +O(1) (including the uncom-
putation of the ancilla qubits) and the controlled incrementer using n borrowed
dirty qubits features a Toffoli count of Tincr(n) = 4n+O(1) (2 additions). Both of
these circuits have to be run twice on roughly n

2 qubits. Therefore, the first part
of the recursion has a Toffoli count of Trec(n) = 8n+O(1). The recursion for the
Toffoli count Tadd(n) of the entire addition circuit thus yields

Tadd(n) = Tadd

(⌈
n

2

⌉)
+ Tadd

(⌊
n

2

⌋)
+ Trec(n)

= 8n log2 n+O(n).

For a controlled addition, only the two CNOT gates acting on the last bit in
Fig. 7.3 need to be turned into their controlled versions, which is another nice
property of this construction.

7.1.3 Parallel / low-depth version

If the underlying hardware supports parallelization, one can compute the carries
for the additions +cL and +cH in Fig. 7.4 in parallel, at the cost of one extra
qubit in state |0〉 which will then hold the output of the CARRY computation of
+cH . Doing this recursively and noting that there must be at least two qubits
of x per CARRY gate, one sees that this circuit can be parallelized at a cost of
n
2 ancilla qubits in state |0〉. Using the construction depicted in Fig. 7.5 allows
us to use n

2 borrowed dirty qubits instead. To see that this construction can be
used in our implementation of Shor’s algorithm, consider that during the modular
multiplication

|x〉 |0〉 7→ |x〉 |(ax) modN〉 ,

we perform additions into the second register, conditioned on the output of the
comparator in Fig. 7.6. Therefore, n qubits of the x-register are readily available
to be used as borrowed dirty qubits, thus reducing the depth of our addition circuit
to O(n).

Note that this is also possible if there is only one dirty ancilla available: Ap-
plying one round of the recursion in Fig. 7.5 allows to run the low-depth version
of +cL using xH as dirty qubits, before executing +cH using rL as dirty qubits.
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7.2 Modular multiplication

7.2 Modular multiplication
The modular multiplier can be constructed from a modular addition circuit using
a repeated-addition-and-shift approach, as done in Refs. [90, 102]:

(ax) modN = (a(xn−12n−1 + · · ·+ x020)) modN
= (((a2n−1) modN)xn−1 + · · ·+ ax0) ,

where xn−1, ..., x0 is the binary expansion of x, and addition is carried out modulo
N . Since xi ∈ {0, 1}, this can be viewed as modular additions of (a2i) modN
conditioned on xi = 1. The transformation by Takahashi et al. [102] allows to
construct an efficient modulo-N addition circuit from a non-modular adder. For an
illustration of the procedure see Fig. 7.6, where the comparator can be implemented
by applying our carry circuit on the inverted bits of b. Also, note that it is sufficient
to turn the final CNOT gates (see Fig. 7.3) of the comparator in Fig. 7.6 into
Toffoli gates in order to arrive at controlled modular addition, since the subsequent
add/subtract operation is executed conditionally on the output of the comparator.

The repeated-addition-and-shift algorithm transforms the input registers

|x〉 |0〉 7→ |x〉 |(a · x) modN〉 .

In Shor’s algorithm, 2n such modular multiplications are required and in order
to keep the total number of 2n + 2 qubits constant, the uncompute method from
Ref. [90] can be used: After swapping the two n-qubit registers, one runs another
modular multiplication circuit, but this time using subtraction instead of addition
and with a new constant of multiplication, namely the inverse a−1 of a modulo N .
This achieves the transformation

|x〉 |(ax) modN〉 7→ |(ax) modN〉 |x〉
7→ |(ax) modN〉

∣∣∣(x− a−1ax) modN
〉

= |(ax) modN〉 |0〉 ,

as desired. In total, this procedure requires 2n+ 1 qubits: 2n for the two registers
and 1 to achieve the modular addition depicted in Fig. 7.6.

7.3 Implementation and simulation results
In Shor’s algorithm, a controlled modular multiplier is needed for the modular
exponentiation which takes the form of a quantum phase estimation, since

ax modN = a2n−1xn−1+2n−2xn−2···+x0 modN
= a2n−1xn−1 · a2n−2xn−2 · · · ax0 ,
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|0〉
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Figure 7.6: Taken from [102]: Construction of a modular adder |b〉 7→ |rmodN〉
with r = a+ b, using a non-modular adder. The CMP gate compares the value in
register b to the classical value N − a, which we implement using our carry gate.
The result indicates whether b < N−a, i.e., it indicates whether we must add a or
a−N . Finally, the indicator qubit is reset to |0〉 using another comparison gate.
In our implementation, the add/subtract operation uses between 1 (serial) and n

2
(parallel) qubits of g.

where again xi ∈ {0, 1} and multiplication is carried out modulo N . Thus, modu-
lar exponentiation can be achieved using modular multiplications by constants ãi
conditioned on xi = 1, where

ãi = a2i modN.

We do not have to condition our inner-most adders; we can get away with adding
two controls to the comparator gates in Fig. 7.6, which turns the CNOT gates
acting on the last bit in Fig. 7.3 into 3-qubit-controlled-NOT gates, which can be
implemented using 4 Toffoli gates and one of the idle garbage qubits of g [26]. Note
that there are n idle qubits available when performing the controlled addition/-
subtraction in Fig. 7.6 (n − 1 qubits in g plus the xi qubit the comparator was
conditioned upon). The controlled addition/subtraction circuit can thus borrow
n
2 dirty qubits from the g register to achieve the parallelism mentioned in subsec-
tion 7.1.2, and the remaining n

2 dirty qubits can be used to decrease the depth of
the incrementers in the recursive execution of the circuit in Fig. 7.5.

We implemented the controlled modular-multiplier performing the operation

|x〉 |0〉 7→ |x〉 |(ax) modN〉
7→ |(ax) modN〉 |0〉

in the LIQUi |〉 quantum software architecture [95]. We extended LIQUi |〉 by
a reversible circuit simulator to enable large scale simulations of Toffoli based
circuits.
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Figure 7.7: Scaling of the Toffoli count TM(n) with bit size n for the controlled
modular multiplier. Each data point represents a modular multiplication run (in-
cluding uncompute of the x-register) using n = 2m bits for each of the two registers,
with m ∈ {3, ..., 13}.

To test our circuit designs and gate estimates, we simulated our circuits on
input sizes of up to 8, 192-bit numbers. The scaling results of the Toffoli count
Tmult(n) of our controlled modular-multiplier are as expected. Each of the two
(controlled) multiplication circuits (namely compute/uncompute) use n (doubly-
controlled) modular additions. The modular addition is constructed using two
(controlled) addition circuits, which have a Toffoli count of Tadd(n) = 8n log2 n +
O(n). Thus we have

Tmult(n) = 4nTadd(n) = 32n2 log2 n+O(n2) .

The experimental data and the fit confirm this expected scaling, as shown in
Fig. 7.7. Since 2n modular multiplications have to be carried out for an entire run
of Shor’s algorithm, the overall Toffoli count is

TShor(n) = 64n3 log2 n+O(n3) .
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7.4 Advantages of Toffoli circuits

7.4.1 Single-qubit rotation gate synthesis

In order to apply a QEC scheme, arbitrary rotation gates have to be decomposed
into sequences of gates from a (universal) discrete gate set—a process called gate
synthesis—for which an algorithm such as the ones in Refs. [27, 73, 104] may be
used. One example of a universal discrete gate set consists of the Pauli gates
(σx, σy, σz), CNOT, Hadamard, and the T gate

(
1 0
0 eiπ/4

)
. This synthesis implies a

growth on the order of Θ(log 1
ε
) in the total number of gates, where ε denotes the

target precision of the synthesis.
In space-efficient implementations of Shor’s algorithm by Beauregard [90] and

Takahashi et al. [102], the angles of the approximate QFT (AQFT) require syn-
thesis. From the total number of gates, the target precision of the gate synthesis
can be estimated to be in ω( 1

n3 ). Therefore, the overall gate count and depth of
the previous circuits by Takahashi et al. and Beauregard are in Θ(n3 log2 n) and
Θ(n3 log n), respectively.

Toffoli based networks, on the other hand, do not suffer from synthesis over-
head. A Toffoli gate can be decomposed exactly into Clifford and T gates using 7
T-gates, or less if global phases can be ignored [26, 107]. While the rotation gates
from the semi-classical inverse QFT (see Fig. 7.1) require synthesis, this does not
affect the asymptotic scaling. Therefore, the overall gate count and depth of our
circuit remain in O(n3 log n) and O(n3), respectively.

7.4.2 Design for testability

In classical computing, thoroughly tested hardware and software components are
preferred over the ones that are not, especially for applications where system-failure
could have catastrophic effects. The same may be true for quantum computing:
Both software and hardware will need to be tested in order to guarantee the
correctness of each and every component involved in a computation for building
large circuits such as the ones used for factoring using Shor’s algorithm. While a
full functional simulation may be possible for arbitrary circuits up to almost 50
qubits with high-performance simulators run on supercomputers [5, 84], simulating
a moderately-sized future quantum computer with just 100 qubits is not feasible
on a (future) classical computer due to the exponential scaling of the required
resources. For Toffoli networks, on the other hand, classical reversible simulators
can be used, which run the circuit on a computational basis state and only update
one single state for each gate. This enables thorough testing of logical level circuits
such as the modular multiplication circuit presented in this chapter.
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7.5 Conclusion
We presented a Toffoli based in-place addition circuit which can be used to im-
plement Shor’s algorithm using 2n + 2 qubits. Our implementation features a
size in O(n3 log n), and a depth in O(n3). In contrast to previous space-efficient
implementations [90, 102], our modular multiplication circuit only consists of Tof-
foli and Clifford gates. In addition to facilitating the process of debugging future
implementations, having a Toffoli based circuit also eliminates the need for single-
qubit-rotation synthesis when employing quantum error-correction. This results
in a better scaling of both size and depth by a factor in Θ(log n).

Our main technical innovation is the implementation of an addition by a con-
stant that can be performed in O(n log n) operations and that uses between 1 and
n ancillas, all of which can be dirty, i.e., can be taken from other parts of the
computation that are currently idle.

As mentioned in [102], it would be interesting to see whether one can find
a linear-time constant-adder which does not require Θ(n) clean ancilla qubits.
This would allow to decrease the size of our circuit to its current depth of O(n3)
without having to increase the total number of qubits to 3n + 2. Also, similar
to [108, 109], it would be interesting to find implementations of Shor’s algorithm
that are geometrically constrained but yet make use of dirty ancillas to reduce the
overall number of qubits required.

In subsequent work [100], the number of qubits was reduced from 2n + 2 to
2n + 1, albeit at the expense of a large increase in circuit depth [100]. However,
this perfectly illustrates how the methods presented in this chapter and in later
work [100] can be employed to arrive at new implementations which trade space
(number of qubits) for time (circuit depth).
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Chapter 8

Optimizing quantum circuits for
arithmetic

Besides integer arithmetic which is required, for instance, in Shor’s algorithm for
factoring, many promising applications of quantum computing involve functions
of fractional numbers.

In this chapter, which is a slightly modified version of Ref. [7], we thus design
and present new quantum circuits for fixed-point arithmetic which can be added
to any quantum software stack, e.g., LiQUi |〉 [95], Quipper [37], ScaffCC [36],
Q# [66], and ProjectQ [9]. In particular, we discuss the implementation of general
smooth functions via a piecewise polynomial approximation, followed by functions
that are used in specific applications. We analyze the costs of implementing an
inverse square root (1/

√
x) using a reversible fixed-point version of the method

used in the computer game Quake III Arena [110] and we then combine this with
our evaluation scheme for smooth functions in order to arrive at an implementation
of arcsin(x).

Having reversible implementations of these functions available enables more
detailed cost analyses of various quantum algorithms such as HHL [101], where
the inverse square root can be used to arrive at x 7→ 1/x and arcsin(x) can be
used to get 1/x from the computational basis state into the amplitude. Similar
use cases arise in Quantum Metropolis sampling [45], Gibbs state preparation [111]
and in the widely applicable framework of Quantum Rejection Sampling [47] to
transform one or more samples of a given quantum state into a quantum state
with potentially different amplitudes, while maintaining relative phases. In all
these examples the computation of arcsin(x) is useful for the rejection sampling
step. Further applications of numerical functions can be anticipated in quantum
machine learning, where sigmoid functions may need to be evaluated on a superpo-
sition of values employing tanh(x), and 1/

√
x can be used for (re-)normalization of

intermediate results [112]. In quantum algorithms for chemistry, further examples
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for numerical functions arise for on-the-fly computation of the one- and two-body
integrals [71]. There, 1/

√
x as well as the evaluation of smooth functions such as

Gaussians is needed. Similarly, on-the-fly computation of finite element matrix
elements often involves the evaluation of functions such as sin(x) and cos(x) [46].

As a result of the large impact that the implementation details of such functions
may have on the practicality of a given quantum algorithm, there is a vast number
of circuits in the literature for various low-level arithmetic functions such as addi-
tion [69, 35, 44, 43]. Furthermore, Refs. [113, 114, 115] discuss implementations of
higher-level arithmetic functions such as sin(x), arcsin(x) and

√
x which we also

consider in the present work, although using different approaches. In particular,
our piecewise polynomial evaluation circuit enables evaluating piecewise smooth
functions to high accuracy using polynomials of very low degree. As a result,
we require only a small number of additions and multiplications, and few quan-
tum registers to hold intermediate results in order to achieve reversibility. While
Ref. [113] employs several evaluations of the sin(x) function in order to hone in
on the actual value of its inverse, our implementation of arcsin(x) features costs
that are similar to just one invocation of sin(x) for x ∈ [−0.5, 0.5]. Otherwise,
if x ∈ [−1, 1], our implementation also requires an evaluation of the square root.
For evaluating inverse square roots, we optimize the initial guess which was also
used in Ref. [114] in order to reduce the number of required Newton iterations by
1 (which corresponds to a reduction by 20-25%). In contrast to the mentioned
works, we implement all our high-level arithmetic functions at the level of Toffoli
gates in the quantum programming language LIQUi |〉. As a result, we were able
to test our circuits on various test vectors using a Toffoli circuit simulator, ranging
up to several hundreds of qubits.

We adapt ideas from classical high-performance computing in order to reduce
the required resources in the quantum setting. While the methods we introduce
allow reducing Toffoli and qubit counts significantly, the resulting circuits are
still expensive, especially in terms of the number of gates that are required. We
expect that this highlights the fact that more research in the implementation of
quantum algorithms is necessary in order to further reduce the cost originating
from arithmetic in the computational basis.

8.1 Learning from classical libraries
While there is no need for computations to be reversible when using classical com-
puters, a significant overlap of techniques from reversible computing can be found
in vectorized high-performance libraries. In quantum computing, having an if-
statement collapses the state vector, resulting in a loss of all potential speedup.
Similarly, if-statements in vectorized code require a read-out of the vector, followed
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by a case distinction and a read-in of the handled values, which incurs a tremen-
dous overhead and results in a deterioration of the expected speedup or even an
overall slowdown. Analogous considerations have to be taken into account when
dealing with, e.g., loops. Therefore, classical high-performance libraries may offer
ideas and insights applicable to quantum computing, especially for mathematical
functions such as (inverse) trigonometric functions, exponentials, logarithms, etc.,
of which highly-optimized implementations are available in, e.g., the Cephes math
library [116] or games such as Quake III Arena (their fast inverse square root [110]
is reviewed in [117]).

Although some of these implementations rely on a floating-point representation,
many ideas carry over to the fixed-point domain, and remain efficient enough
even when requiring reversibility. Specifically, we adapt implementations of the
arcsine function from [116] and the fast inverse square root from [117] to the
quantum domain by providing reversible low-level implementations. Furthermore,
we describe a parallel version of the classical Horner scheme [118], which enables
the conditional evaluation of many polynomials in parallel and, therefore, efficient
evaluation of piecewise polynomial approximations.

8.2 Evaluation of piecewise polynomial approxi-
mations

A basic scheme to evaluate a single polynomial on a quantum computer in the
computational basis is the classical Horner scheme, which evaluates

P (x) =
d∑
i=0

aix
i

by iteratively performing a multiplication by x, followed by an addition of ai for
i ∈ {d, d− 1, ..., 0}. This amounts to performing the following operations:

adx+ ad−1 7→ adx
2 + ad−1x+ ad−2

· · ·
7→ adx

d + · · ·+ a0 .

A reversible implementation of this scheme simply stores all intermediate re-
sults. At iteration i, the last iterate yi−1 is multiplied by x into a new register yi,
followed by an addition by the (classically-known) constant ai, which may make
use, e.g., the addition circuit by Takahashi [69] (if there is an extra register left),
or the in-place constant adder by Häner et al. [6], which does not require an an-
cilla register but is more costly in terms of gates. Due to the linear dependence of
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Figure 8.1: The LABEL gate initializes the label register |l〉, which consists of
dlog2(M)e qubits, to indicate the subdomain Ωl to which x belongs. Pi computes
the predicate indicating whether x ∈ Ωi into the ancilla qubit. Conditioned on
this result, the label is then initialized to the value chosen to represent the i-th
interval.

successive iterates, a pebbling strategy can be employed in order to optimize the
space/time trade-offs according to some chosen metric [89].

Oftentimes, the degree d of the minimax approximation over a domain Ω must
be chosen to be very high in order to achieve a certain L∞(Ω)-error. In such cases,
it makes sense to partition Ω, i.e., find Ωi such that

Ω =
M⋃
i=0

Ωi , Ωi ∩ Ωj = ∅ ∀i 6= j ,

and to then perform a case distinction for each input, evaluating a different poly-
nomial for x ∈ Ωi than for y ∈ Ωj if i 6= j. A straight-forward generalization of
this approach to the realm of quantum computing would loop over all subdomains
Ωi and, conditioned on a case-distinction or label register |l〉, evaluate the cor-
responding polynomial. Thus, the cost of this inefficient approach grows linearly
with the number of subdomains.

In order to improve upon this approach, one can parallelize the polynomial
evaluation if the degree d is constant over the entire domain Ω. Note that merely
adding the label register |l〉 mentioned above and performing

|yl,i−1x〉 |0〉 |l〉 7→ |yl,i−1x〉 |al,i〉 |l〉 (8.1)
7→ |yl,i−1x+ al,i〉 |al,i〉 |l〉 (8.2)
7→ |yl,i〉 |0〉 |l〉 , (8.3)

enables the evaluation of multiple polynomials in parallel. Despite this, the re-
source requirements are nearly identical to the circuit for evaluating a single poly-
nomial, as will be shown in more detail in Appendix 8.B. We note that the depth
of the circuit is the same, since the initialization step (8.1) can be performed while
multiplying the previous iterate yi−1 by x, see Fig. 8.2. An illustration of the cir-
cuit computing the label register |l〉 can be found in Fig. 8.1. A slight drawback
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Figure 8.2: Our parallel polynomial evaluation circuit. NEXTa changes the register
to hold the next set of coefficients (in superposition) ∑l |l〉 |al,i−1〉 7→

∑
l |l〉 |al,i〉.

MUL and ADD perform a multiplication and an addition, respectively. The small
triangle indicates the output of the ADD and MUL gates.

of this parallel evaluation is that it requires one extra ancilla register for the last
iteration, since the in-place addition circuit [6] can no longer be used. Resource
estimates of a few functions which were implemented using this approach can be
found in Table 8.E.1. The small overhead of using many intervals allows to achieve
good approximations already for low-degree polynomials (and thus using few qubit
registers).

Using reversible pebble games [119], it is possible to trade the number of reg-
isters needed to store the iterates with the depth of the resulting circuit. The
parameters are: the number n of bits per register, the total number m of these
n-qubit registers, the number r of Horner iterations, and the depth d of the re-
sulting circuit. The trade-space we consider involves m, r, and d. In particular,
we consider the question of what the optimal circuit depth is for a fixed number
m of registers and a fixed number r of iterations. As in [120, 89] we use dynamic
programming to construct the optimal strategies as the dependency graph is just a
line which is due to the sequential nature of Horner’s method (the general pebbling
problem is much harder to solve, in fact finding the optimal strategy for general
graphs is known to be PSPACE complete [121]). The optimal number of pebbling
steps as a function of m and r can be found in Table 8.1.
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m\r 1 2 3 4 5 6 7 8 16 32 64

1 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 1 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 1 3 5 9 ∞ ∞ ∞ ∞ ∞ ∞ ∞
4 1 3 5 7 11 15 19 25 ∞ ∞ ∞
5 1 3 5 7 9 13 17 21 71 ∞ ∞
6 1 3 5 7 9 11 15 19 51 193 ∞
7 1 3 5 7 9 11 13 17 49 145 531
8 1 3 5 7 9 11 13 15 47 117 369

Table 8.1: Optimal pebbling strategies for fixed number m of registers and fixed
number r of sequential iterations. This table can be used for both the Horner
scheme for polynomial evaluation, where r corresponds to the polynomial degree,
and for Newton’s method, where r denotes the number of iterations. The number
for entry (m, r) denotes how many pebbling steps it takes to compute the entire
sequence. The circuit width and depth can be obtained from these numbers.

8.3 Software stack module for piecewise smooth
functions

In order to enable automatic compilation of an oracle which implements a piece-
wise smooth function, the Remez algorithm [122] can be used in a subroutine to
determine a piecewise polynomial approximation, which can then be implemented
using the circuit described in the previous section.

In particular, we aim to implement the oracle with a given precision, accuracy,
and number of available quantum registers (or, equivalently, the polynomial degree
d if no pebbling is employed) over a user-specified interval Ω = [a, a + L). Our
algorithm proceeds as follows: In a first step, run the Remez algorithm which,
given a function f(x) over a domain Ω ⊂ R and a polynomial degree d, finds the
polynomial P (x) which approximates f(x) with minimal L∞(Ω)-error, and check
whether the achieved error is low enough. If it is too large, reduce the size of the
domain Ω1 := [a, a + L

2 ) and check again. Repeating this procedure and carry-
ing out binary search on the right interval border will eventually lead to the first
subdomain Ω1 = [a, b1) which is the largest interval such that the corresponding
degree d polynomial achieves the desired accuracy. Next, one determines the next
subdomain Ω2 = [b1, b2) using the same procedure. This is iterated until bi ≥ b,
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meaning that all required subdomains and their corresponding polynomials have
been determined and f(x) can be implemented using a parallel polynomial evalu-
ation circuit. This algorithm was implemented and then run for various functions,
target accuracies, and polynomial degrees in order to determine approximate re-
source estimates for these parameters, see Table 8.E.1 in the appendix.

8.4 Inverse square root

For quantum chemistry or machine learning applications, also non-smooth func-
tions are required. Most notably, the inverse square root can be used in both
examples, namely for the calculation of the Coulomb potential and to determine
the reciprocal when employing HHL [101] for quantum machine learning.

In classical computing, inverse square roots appear in computer graphics and
the term “fast inverse square root” is often used: It labels the procedure to ap-
proximate the inverse square root using bit-operations on the floating-point rep-
resentation of the input, as it was done in Quake III Arena [110] (see [117] for a
review). The code ultimately performs a Newton-Raphson iteration in order to
improve upon a pretty accurate initial guess, which it finds using afore-mentioned
bit-operations. Loosely speaking, the bit-operations consist of a bit-shift to divide
the exponent by two in order to approximate the square root, followed by a sub-
traction of this result from a magic number, effectively negating the exponent and
correcting the mantissa, which was also shifted together with the exponent. The
magic number can be chosen using an auto-tuning procedure and varies depending
on the objective function being used [117]. This provides an extremely good initial
guess for the Newton iteration at very low cost.

In our reversible implementation, we use a similar procedure to compute the
inverse square root using fixed-point arithmetic. While we cannot make use of the
floating-point representation, we can still find a low-cost initial guess which allows
for a small number of Newton iterations to be sufficient (i.e., 2-4 iterations). This
includes determining the position of the first one in the bit-representation of the
input, followed by an initialization which involves a case distinction on the magic
number to use. Our three magic constants (see Appendix 8.C) were tuned such
that the error peaks near powers of two in Fig. 8.3a vanish. The peaks appear due
to the fact that the initial guess takes into account the location of the first one but
completely ignores the actual magnitude of the input. For example, all inputs in
[1, 2) yield the same initial guess. The error plot with tuned constants is depicted
in Fig. 8.3b. One can clearly observe that an entire Newton iteration can be saved
when aiming for a given L∞-error.
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(a) Before constant-tuning.
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(b) After constant-tuning.

Figure 8.3: Absolute errors of the inverse square root before and after tuning the
constants (see Eqn. 8.5). The errors were evaluated for N = 2000 (equidistant)
points in the interval [ 1

N
, 5] using m ∈ {2, 3, 4} Newton iterations and correspond-

ing bit sizes n ∈ {25, 35, 55}. The fixed-point position is p = 12, in order to ensure
that no overflow occurs for small inputs.
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Figure 8.4: Absolute error on [0, 1] for N = 2000 points of our reversible imple-
mentation of the arcsine using m ∈ {3, 4, 5} Newton iterations for calculating the
inverse square root. The fixed-point position is chosen to be p = 2 and total bit
size n was chosen to be in {35, 50, 55}.

8.5 Arcsine

Following the implementation used in the classical math library Cephes [116], an
arcsine can be implemented as a combination of polynomial evaluation and the
square root. Approximating the arcsine using only a polynomial allows for a good
approximation in [−0.5, 0.5], but not near ±1 (where it diverges). The Cephes
math library remedies this problem by adding a case distinction, employing a
“double-angle identity” for |x| ≥ 0.5. This requires computing the square root,
which can be achieved by first calculating the inverse square root, followed by
x · 1√

x
=
√
x. Alternatively, the new square root circuit from Ref. [115] can be

used.
We have implemented our circuit for arcsine and we show the resulting error

plot in Fig. 8.4. The oscillations stem from the minimax polynomial which is
used to approximate the arcsine on [−0.5, 0.5]. More implementation details and
resource estimates can be found in Appendix 8.D.

Note that certain applications may allow to trade off error in the arcsine with,
e.g., probability of success by rescaling the input such that the arcsine needs to
be computed only for values in [−0.5, 0.5]. This would allow one to remove the
case-distinction and the subsequent calculation of the square root: One could
evaluate the arcsine at a cost that is similar to the implementation costs of sin/cos.
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8.6 Conclusion

Estimates for the Toffoli and qubit counts for this case can also be found in the
appendix, see Table 8.E.1.

8.6 Conclusion
We have presented efficient quantum circuits for the evaluation of many mathe-
matical functions, including (inverse) square root, Gaussians, hyperbolic tangent,
exponential, sine/cosine, and arcsine. Our circuits can be used to obtain accurate
resource estimates for various quantum algorithms and the results may help to
identify the first large-scale applications as well as bottlenecks in these algorithms
where more research is necessary in order to make the resource requirements prac-
tical. When embedded in a quantum compilation framework, our general parallel
polynomial evaluation circuit can be used for automatic code generation when
compiling oracles that compute piecewise smooth mathematical functions in the
computational basis. This tremendously facilitates the implementation of quantum
algorithms which employ oracles that compute such functions on a superposition
of inputs.
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Appendix: Details

This appendix contains implementation details, resource estimates, and simulation
results for all mathematical functions that were presented in chapter 8. This
appendix was previously published in Ref. [7].

8.A Basic circuit building blocks for fixed-point
arithmetic

In fixed-point arithmetic, one represents numbers x using n bits as

x = xn−1 · · ·xn−p︸ ︷︷ ︸
p

. xn−p−1 · · ·x0︸ ︷︷ ︸
n−p

,

where xi ∈ {0, 1} is the i-th bit of the binary representation of x, and the point
position p denotes the number of binary digits to the left of the binary point. We
choose both the total number of bits n and the point position p to be constant
over the course of a computation. As a consequence, over- and underflow errors are
introduced, while keeping the required bit-size from growing with each operation.

Fixed-point addition. We use a fixed-point addition implementation, which
keeps the bit-size constant. This amounts to allowing over- and underflow, while
keeping the registers from growing with each operation.

Fixed-point multiplication. Multiplication can be performed by repeated-
addition-and-shift, which can be seen from

x · y = xn−12n−1y + · · ·+ x020y ,

where x = ∑
i xi2i with xi ∈ {0, 1} denotes the binary expansion of the n-bit num-

ber x. Thus, for i ∈ {0, ..., n−1}, 2i−(n−p)y is added to the result register (which is
initially zero) if xi = 1. This can be implemented using n controlled additions on

125



8.B Resource estimates for polynomial evaluation

1, 2, ..., n bits if one allows for pre-truncation: Instead of computing the 2n-bit re-
sult and copying out the first n bits before uncomputing the multiplication again,
the additions can be executed on a subset of the qubits, ignoring all bits beyond
the scope of the n-bit result. Thus, each addition introduces an error of at most
εA = 1

2n−p . Since there are (at most) n such additions, the total error is

ε = n

2n−p ,

a factor n larger than using the costly approach mentioned above.
Negative multipliers are dealt with by substituting the controlled addition by

a controlled subtraction when conditioning on the most significant bit [123] be-
cause it has negative weight wMSB = −2n−1 in two’s-complement notation. The
multiplicand is assumed to be positive throughout, which removes the need for
conditional inversions of input and output (for every multiplication), thus tremen-
dously reducing the size of circuits that require many multiplications such as, e.g.,
polynomial evaluation.

Fixed-point squaring. The square of a number can be calculated using the
same approach as for multiplication. Yet, one can save (almost) an entire register
by only copying out the bit being conditioned on prior to performing the controlled
addition. Then, the bit can be reset using another CNOT gate, followed by copying
out the next bit and performing the next controlled addition. The gate counts are
identical to performing

|x〉 |0〉 |0〉 7→ |x〉 |x〉 |0〉 7→ |x〉 |x〉
∣∣∣x2
〉
7→ |x〉

∣∣∣x2
〉
|0〉 ,

while allowing to save n− 1 qubits.

8.B Resource estimates for polynomial evalua-
tion

The evaluation of a degree d polynomial requires an initial multiplication ad · x,
an addition of ad−1, followed by d − 1 multiply-accumulate instructions. The
total number of Toffoli gates is thus equal to the cost of d multiply-accumulate
instructions. Furthermore, d+1 registers are required for holding intermediate and
final result(s) if no in-place adder is used for the last iteration (and no non-trivial
pebbling strategy is applied). Other strategies may be employed in order to reduce
the number of ancilla registers, at the cost of a larger gate count, see Table 8.1 for
examples.

Note that all multiplications can be carried out assuming x > 0, i.e. x can be
conditionally inverted prior to the polynomial evaluation (and the pseudo-sign bit
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is copied out). The sign is then absorbed into the coefficients: Before adding ai
into the |yi−1x〉-register, it is inverted conditioned on the sign-bit of x being set if
the coefficient corresponds to an odd power. This is done because it is cheaper to
implement a fixed-point multiplier which can only deal with yi−1 being negative
(see Sec. 8.A).

The Toffoli gate count of multiplying two n-bit numbers (using truncated ad-
ditions as described in Sec. 8.A) is

Tmul(n, p) =
p−1∑
i=0

Tcadd(n− i) +
n−p∑
i=1

Tcadd(n− i)

=
p−1∑
i=0

3(n− i) +
n−p∑
i=1

3(n− i) + 3n

= 3
2n

2 + 3np+ 3
2n− 3p2 + 3p

if one uses the controlled addition circuit by Takahashi et al. [69], which requires
3n + 3 Toffoli gates to (conditionally) add two n-bit numbers. The subsequent
addition can be implemented using the addition circuit by Takahashi et al. [69],
featuring 2n− 1 Toffoli gates. Thus, the total cost of a fused multiply-accumulate
instruction is

Tfma(n, p) = 3
2n

2 + 3np+ 7
2n− 3p2 + 3p− 1 .

Therefore, the total Toffoli count for evaluating a degree d polynomial is

Tpoly(n, d, p) = 3
2n

2d+ 3npd+ 7
2nd− 3p2d+ 3pd− d .

Evaluating M polynomials in parallel for piecewise polynomial approximation
requires only n+ dlog2Me additional qubits (since one n-qubit register is required
to perform the addition in the last iteration, which is no longer just a constant)
and 2M dlog2Me-controlled NOT gates, which can be performed in parallel with
the multiplication. This increases the circuit size by

Textra(M) = 2M(4dlog2Me − 8)

Toffoli gates per multiply-accumulate instruction, since a k-controlled NOT can
be achieved using 4(k − 2) Toffoli gates and k − 2 dirty ancilla qubits [26], which
are readily available in this construction.

The label register |l〉 can be computed using 1 comparator per subinterval

Ii = [ai, aii+1), a0 < a1 < ... < aM−1 .

The comparator stores its output into one extra qubit, flipping it to |1〉 if x ≤ ai+1.
The label register is then incremented from i− 1 to i, conditioned on this output
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qubit still being |0〉 (indicating that x > ai). Incrementing |l〉 can be achieved using
CNOT gates applied to the qubits that correspond to ones in the bit-representation
of (i − 1) ⊕ i. Finally, the comparator output qubit is uncomputed again. This
procedure is carried out M times for i = 0, ...,M − 1 and requires 1 additional
qubit. The number of extra Toffoli gates for this label initialization is

Tlabel(M,n) = M · 2Tcmp(n)
= 4Mn ,

where, as a comparator, we use the CARRY-circuit from [6], which needs 2n
Toffoli gates to compare a classical value to a quantum register, and another 2n
to uncompute the output and intermediate changes to the n required dirty ancilla
qubits.

In total, the parallel polynomial evaluation circuit thus requires
Tpp(n, d, p,M) = Tpoly(n, d, p) + d · Textra(M)

+ Tlabel(M,n)

= 3
2n

2d+ 3npd+ 7
2nd− 3p2d+ 3pd− d

+ 2Md(4dlog2Me − 8) + 4Mn

Toffoli gates and (d+ 1)n+ dlog2Me+ 1 qubits.

8.C (Inverse) Square root
The inverse square root, i.e.,

f(x) = 1√
x

can be computed efficiently using Newton’s method. The iteration looks as follows:

xn+1 = xn

(
1.5− ax2

n

2

)
,

where a is the input and xn n→∞−→ 1√
a
if the initial guess is sufficiently close to the

true solution.

8.C.1 Reversible implementation
Initial guess and first round. Finding a good initial guess x0 ≈ 1√

a
for New-

ton’s zero-finding routine is crucial for (fast) convergence. A crude approximation
which turns out to be sufficient is the following:

1√
a

=
(
2log2 a

)− 1
2 = 2−

log2 a
2 ≈ 2b−

blog2 ac
2 e = x̃0 ,

128



Optimizing quantum circuits for arithmetic

where blog2 ac can be determined by finding the first “1” when traversing the bit-
representation of a from left to right (MSB to LSB). While the space requirement
for x̃0 is in O(log2 n), such a representation would be impractical for the first
Newton round. Furthermore, noting that the first iteration on x̃0 = 2k leads to

x̃1 = 2k
(

1.5− a22k

2

)
=: x0 , (8.4)

one can directly choose this x0 as the initial guess. The preparation of x0 can
be achieved using (n − 1) + n + 1 ancilla qubits, which must be available due to
the space requirements of the subsequent Newton steps. The one ancilla qubit
is used as a flag indicating whether the first “1” from the left has already been
encountered. For each iteration i ∈ {n − 1, ..., 1, 0}, one determines whether the
bit ai is 1 and stores this result ri in one of the n work qubits, conditioned on the
flag being unset. Then, conditioned on ri = 1, the flag is flipped, indicating that
the first “1” has been found. If ri = 1, the x0-register is initialized to the value
in (8.4) as follows: Using CNOTs, the x0-register can be initialized to the value
1.5 shifted by k = p−2i

2 , where p denotes the binary point position of the input,
followed by subtracting the (3k − 1)-shifted input a from x0, which may require
up to n− 1 ancilla qubits.

In order to improve the quality of the first guess for numbers close to 2k for
some k ∈ Z, one can tune the constant 1.5 in (8.4), i.e., turn it into a function
C(k) of the exponent k. This increases the overall cost of calculating x0 merely by
a few CNOT gates but allows to save an entire Newton iteration even when only
distinguishing three cases, namely

C(k) :=


1.613, k < 0
1.5, k = 0
1.62, k > 0

. (8.5)

The Newton iteration. Computing xn+1 from xn by

xn+1 = xn

(
1.5− ax2

n

2

)
,

can be achieved as follows:

1. Compute the square of xn into a new register.

2. Multiply x2
n by the shifted input to obtain ax2

n/2.

3. Initialize another register to 1.5 and subtract ax2
n/2.
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|0〉

|xn〉

|0〉

|0〉

|0〉

|a〉

SQR

MUL

SET1.5

SUB

MUL

ADD

SET†
1.5

MUL†

SQR†

|xn+1〉

|xn〉

|0〉

|0〉

|0〉

|a〉

Figure 8.C.1: Circuit for the n-th Newton iteration of computing the inverse square
root of a, given in a quantum superposition in |a〉. SQR computes the square of
the previous iterate xn into an empty result-register, which is then multiplied by
the input a (MUL), followed by subtracting (SUB) this intermediate result from
the value 1.5 (initialized using the SET1.5-gate). Finally, the next iterate, i.e.,
xn+1 = xn(1.5− 1

2ax
2
n) can be computed by multiplying this intermediate result by

xn. All temporary results are then cleared by running the appropriate operations
in reverse order.

4. Multiply the result by xn to arrive at xn+1.

5. Uncompute the three intermediate results.

The circuit of one such Newton iteration is depicted in Fig. 8.C.1.
Therefore, for m Newton iterations, this requires m+ 3 n-qubit registers if no

pebbling is done on the Newton iterates, i.e., if all xi are kept in memory until the
last Newton iteration has been completed.

8.C.2 Resource estimates
Computing the initial guess for the fast inverse square root requires n controlled
additions of two n-bit numbers plus 2n Toffoli gates for checking/setting the flag
(and uncomputing it again). Thus, the Toffoli count for the initial guess is

Tinit(n) = nTcadd(n) + 2n = 3n2 + 5n .

Each Newton iteration features squaring, a multiplication, a subtraction, a final
multiplication (yielding the next iterate), and then an uncomputation of the three
intermediate results. In total, one thus employs 5 multiplications and 2 additions
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(of which 2 multiplications and 1 addition are run in reverse), which yields the
Toffoli count

Titer(n, p) = 5Tmul(n, p) + 2Tadd(n)

= 15
2 n

2 + 15np+ 23
2 n− 15p2 + 15p− 2 .

The number of Toffoli gates for the entire Newton procedure (without uncomputing
the iterates) for m iterations thus reads

Tinvsqrt(n,m, p) = Tinit(n) +mTiter(n, p)

= n2(15
2 m+ 3) + 15npm+ n(23

2 m+ 5)

− 15p2m+ 15pm− 2m .

Since each Newton iteration requires 3 ancilla registers (which are cleaned up after
each round) to produce the next iterate, the total number of qubits is n(m + 4),
where one register holds the initial guess x0.

Note that this is an upperbound on the required number of both qubits and
Toffoli gates. Since Newton converges quadratically, there is no need to perform
full additions and multiplications at each iteration. Rather, the number of bits n
used for the fixed point representation should be an (increasing) function of the
Newton iteration.

The square root can be calculated using

√
x = x · 1√

x
,

i.e., at a cost of an additional multiplication into a new register. Note that this
new register would be required anyway when copying out the result and running
the entire computation in reverse, in order to clear registers holding intermediate
results. Thus, the total number of logical qubits remains unchanged.

8.D Arcsine
While sin(x) and cos(x) are very easy to approximate using, e.g., polynomials,
their inverses are not. The main difficulty arises near ±1, where

d arcsin(x)
dx

= 1√
1− x2
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diverges. Therefore, it makes sense to use an alternative representation of arcsin(x)
for larger values of x, e.g.,

arcsin(x) = π

2 − arccos(x)

= π

2 − arcsin
(√

1− x2
)
.

Applying the double-argument identity to the last expression yields

arcsin(x) = π

2 − 2 arcsin
√1− x

2

 , (8.6)

a very useful identity which was already used in a classical math library called
Cephes [116]. We use the same partitioning of the interval, using a minimax
polynomial to approximate arcsin(x) for x ∈ [0, 0.5), and the transformation in
(8.6) for x ∈ [0.5, 1]. We use our inverse square root implementation to compute√
z for

z = 1− x
2 ,

which satisfies z ∈ [0, 0.25], for x ∈ [0.5, 1]. Therefore, the fixed point position has
to be chosen large, as the inverse square root diverges for small x. Luckily, the
multiplication by x after this computation takes care of the singularity and, since
most bits of low-significance of 1√

x
will cause underflow for small x, we can get away

with computing a shifted version of the inverse square root. This optimization
reduces the number of extra bits required during the evaluation of the inverse
square root.

It is worth noting that in many applications, evaluating arcsin(x) only on the
interval [0, 0.5] may be sufficient. In such cases, the cost is much lower since this
can be achieved using our parallel polynomial evaluation circuit. The Toffoli counts
for this case can be found in Table 8.E.1.

8.D.1 Reversible implementation
The Arcsine is implemented as a combination of polynomial evaluation and the
inverse square root to extend the polynomial approximation on [0, 0.5] to the
entire domain [0, 1] employing the double-argument identity above. First, the
(pseudo) sign-bit of x is copied out and x is conditionally inverted (modulo two’s-
complement) to ensure x ≥ 0. Since there are plenty of registers available, this can
be achieved by conditionally initializing an extra register to |1〉 and then using a
normal adder to increment x by one, where x denotes the bit- or one’s-complement
of x. Since x ∈ [0, 1], one can determine whether x < 0.5 using just one Toffoli
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gate (and 4 NOT gates). The result of this comparison is stored in an ancilla qubit
denoted by |a〉. z = (1 − x)/2 can be computed using an adder (run in reverse)
acting on x shifted by one and a new register, after having initialized it to 0.5 using
a NOT gate. Then, conditioned on |a〉 (i.e., on a being 0), this result is copied
into the polynomial input register |pin〉 and, conditioned on |a〉, x is squared into
|pin〉. After having applied our polynomial evaluation circuit (which uncomputes
intermediate results) to this input, |pin〉 can be uncomputed again, followed by
computing the square root of z. Then, the result of the polynomial evaluation
must be multiplied by either

√
z or x, which can be achieved using 2n controlled

swaps and one multiplier. The final transformation of the result consists of an ini-
tialization to π/2 followed by a subtraction, both conditioned on |a〉, and a copy
conditioned on |a〉. Finally, the initial conditional inversion of x can be undone
after having (conditionally) inverted the output.

8.D.2 Resource estimates

Following this procedure, the Toffoli count for this arcsine implementation on n-bit
numbers using m Newton iterations for calculating

√
z and a degree-d polynomial

to approximate arcsin(x) on [0, 0.5] can be written as

Tarcsin = 3Tinv + (2Tpoly − Tfma)
+ 2Tcsquare + Tmul + Tcadd

+ (2Tinvsqrt + Tmul) + 5n+ 2
+ Tadd

= 3Tadd + 2Tpoly + 3Tmul

+ Tcadd + 2Tinvsqrt + 9n+ 2
= d(3n2 + n(6p+ 7)− 6(p− 1)p− 2)

+m(n(15n+ 30p+ 23)− 30p(p− 1)− 4)

+ 9(n+ 1)p+ 9
2n(n+ 1)

+ 6n2 + 28n− 9p2 + 2

where Tinv(n) denotes the Toffoli count for computing the two’s-complement of
an n-bit number and Tcsquare(n, p) = Tmul(n, p) + 2n is the number of Toffoli gates
required to perform a conditional squaring operation. Furthermore, 2n Toffoli
gates are needed to achieve the conditional n-bit swap operation (twice), and
another 3n are used for (conditional) copies.
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Figure 8.D.1: Absolute error on [0, 5] for N = 2000 equidistant points of our
reversible implementation of the square root for m ∈ {2, 3, 4} Newton iterations
and corresponding bit sizes n ∈ {25, 35, 50}. The fixed-point position is chosen to
be p = 5.

8.E Simulation results
All circuits were implemented at the gate level and tested using a reversible sim-
ulator extension to LIQUi |〉. The results are presented in this section.

8.E.1 Piecewise polynomial approximation
A summary of the required resource for implementing tanh(x), exp(−x2), and
sin(x) can be found in Tbl. 8.E.1. For each function, one set of parameters was
implemented reversibly at the level of Toffoli gates in order to verify the proposed
circuits.

8.E.2 (Inverse) Square root
The convergence of our reversible fast inverse square root implementation with the
number of Newton iterations can be found in Fig. 8.3b, where the bit sizes and
point positions have been chosen such that the roundoff errors do not interfere
significantly with the convergence. For all practical purposes, choosing between 3
and 5 Newton iterations should be sufficient. The effect of tuning the constants in
the initial guess (see Eqn. 8.5) can be seen when comparing Fig. 8.3a to Fig. 8.3b:
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The initial guess is obtained from the location of the first non-zero in the bit-
representation of the input, which results in large rounding-effects for inputs close
to an integer power of two. Tuning the initial guess results in almost uniform
convergence, which allows to save an entire Newton iteration for a given L∞-error.

The square root converges better than the inverse square root for small values,
which can be expected, since

√
x = x · 1√

x

has a regularizing effect for small x. The error after m Newton iterations when
using n bits for the fixed point representation is depicted in Fig. 8.D.1. Addition-
ally, the initial guess could be improved by tuning the constants in Eqn. 8.4 such
that the error is minimal after multiplying x · 1√

x
, instead of just optimizing for

the inverse square root itself.

8.E.3 Arcsine
Our implementation of Arcsine uses both the polynomial evaluation and square
root subroutines. The oscillatory behavior which can be seen in Fig. 8.4 is typical
for minimax approximations. For x > 0.5, the resolution is lower due to the
wider range of 1√

x
, which was accounted for by calculating a shifted version of

the inverse square root. While this allows to save a few qubits (to the left of the
binary point), the reduced number of qubits to the right of the binary point fail
to resolve the numbers as well, which manifests itself by bit-noise for x > 0.5 in
Fig. 8.4. The degrees of the minimax approximation were chosen to be 7, 13, and
17 for m = 3, 4, 5, respectively. Since arcsin(x) is an odd function, this amounts
to evaluating a degree 3, 6, and 8 polynomial in x2, followed by a multiplication
by x.

Function L∞ error Polynomial
degree

Number of
subintervals

Number of
qubits

Number of
Toffoli
gates

tanh(x)
10−5

3 15 136 12428
4 9 169 13768
5 7 201 15492
6 5 234 17544

10−7

3 50 166 27724
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4 23 205 23095
5 14 244 23570
6 10 284 26037

10−9

3 162 192 77992
4 59 236 41646
5 30 281 35460
6 19 327 36578

exp(−x2)
10−5

3 11 132 10884
4 7 163 12141
5 5 195 14038
6 4 226 15863

10−7

3 32 161 20504
4 15 199 19090
5 10 238 21180
6 7 276 23254

10−9

3 97 187 49032
4 36 231 32305
5 19 275 30234
6 12 319 31595

sin(x)
10−5

3 2 113 6188
4 2 141 7679
5 2 169 9170
6 2 197 10661

10−7

3 3 142 9444
4 2 176 11480
5 2 211 13720
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6 2 246 15960
10−9

3 7 167 13432
4 3 207 15567
5 2 247 18322
6 2 288 21321

exp(−x)
10−5

3 11 116 8106
4 6 143 8625
5 5 171 10055
6 4 198 11245

10−7

3 31 149 17304
4 15 184 15690
5 9 220 16956
6 7 255 18662

10−9

3 97 175 45012
4 36 216 28302
5 19 257 25721
6 12 298 26452

arcsin(x)
10−5

3 2 105 4872
4 2 131 6038
5 2 157 7204
6 2 183 8370

10−7

3 3 134 7784
4 2 166 9419
5 2 199 11250
6 2 232 13081

10−9
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3 6 159 11264
4 3 197 13138
5 3 236 15672
6 2 274 17938

Table 8.E.1: Costs associated with the evaluation of Gaussian, hyperbolic tangent,
sin(x), exp(−x) for x ≥ 0, and arcsin(x) on [−0.5, 0.5] using piecewise polynomial
approximation in combination with our parallel evaluation scheme. All Toffoli
counts are for compute only (i.e., there is an additional factor of 2 for uncompute).
For even/odd functions, the given degree corresponds to the evaluation cost, i.e.,
the actual polynomial being implemented has degree 2d or 2d+ 1, respectively.
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Chapter 9

Conclusion and outlook

In this thesis, different aspects of code optimization for quantum computing were
discussed in three parts. The first part focused on optimizations which can be
performed automatically by compilers. A new type of optimizer was introduced
which, by employing the Hoare triples of all invoked subroutines, is able to exploit
optimization opportunities that could not be identified as such by previous ap-
proaches. In the last chapter of the first part, a methodology was presented which
is capable of optimizing approximation errors during compilation in order to re-
duce the resource requirements of the compiled quantum program. Integration of
our implementation into a software framework is ongoing work and will greatly
facilitate acquiring resource estimates for complex quantum algorithms.

In the second part, two vastly different approaches to the simulation of quan-
tum circuits were discussed. By employing code optimizations at the core, node,
and cluster level, our implementation of a full state simulator successfully outper-
formed previous state-of-the-art simulations by more than an order of magnitude
at every scale. After introducing the new concept of quantum circuit emulation, we
showed that it is able to outperform direct simulation by several orders of magni-
tude, especially for circuits evaluating high-level mathematical functions. Despite
the conceptual differences between the two approaches, both have proven to be
valuable assets to quantum software development. As a consequence, both have
been made publicly available via the ProjectQ framework [9].

In the third and final part of this thesis, new designs of quantum circuits for
evaluating mathematical functions were introduced, since implementation details
have significant ramifications on the run time of quantum programs. To this end,
a new addition circuit was developed in chapter 7. By borrowing idle qubits from
other parts of the computation, our circuit was shown to reduce the resource re-
quirements of Shor’s algorithm [13]. In addition, the resulting circuit is almost fully
classical, making it amenable to testing using reversible logic simulators. Finally,
optimized reversible implementations of various higher-level mathematical func-
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tions were developed and presented in chapter 8. The resulting resource estimates
may serve as guidance for future work aiming to reduce the cost of arithmetic in
quantum programs. Additionally, our implementations can be added as a quantum
math library to any software framework for quantum computing.
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